Skip to main content
×
Home

EXPONENTIAL IMPROVEMENT IN PRECISION FOR SIMULATING SPARSE HAMILTONIANS

  • DOMINIC W. BERRY (a1), ANDREW M. CHILDS (a2) (a3), RICHARD CLEVE (a4) (a5), ROBIN KOTHARI (a4) (a6) and ROLANDO D. SOMMA (a7)...
Abstract

We provide a quantum algorithm for simulating the dynamics of sparse Hamiltonians with complexity sublogarithmic in the inverse error, an exponential improvement over previous methods. Specifically, we show that a $d$ -sparse Hamiltonian $H$ acting on $n$ qubits can be simulated for time $t$ with precision $\unicode[STIX]{x1D716}$ using $O(\unicode[STIX]{x1D70F}(\log (\unicode[STIX]{x1D70F}/\unicode[STIX]{x1D716})/\log \log (\unicode[STIX]{x1D70F}/\unicode[STIX]{x1D716})))$ queries and $O(\unicode[STIX]{x1D70F}(\log ^{2}(\unicode[STIX]{x1D70F}/\unicode[STIX]{x1D716})/\log \log (\unicode[STIX]{x1D70F}/\unicode[STIX]{x1D716}))n)$ additional 2-qubit gates, where $\unicode[STIX]{x1D70F}=d^{2}\Vert H\Vert _{\max }t$ . Unlike previous approaches based on product formulas, the query complexity is independent of the number of qubits acted on, and for time-varying Hamiltonians, the gate complexity is logarithmic in the norm of the derivative of the Hamiltonian. Our algorithm is based on a significantly improved simulation of the continuous- and fractional-query models using discrete quantum queries, showing that the former models are not much more powerful than the discrete model even for very small error. We also simplify the analysis of this conversion, avoiding the need for a complex fault-correction procedure. Our simplification relies on a new form of ‘oblivious amplitude amplification’ that can be applied even though the reflection about the input state is unavailable. Finally, we prove new lower bounds showing that our algorithms are optimal as a function of the error.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      EXPONENTIAL IMPROVEMENT IN PRECISION FOR SIMULATING SPARSE HAMILTONIANS
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      EXPONENTIAL IMPROVEMENT IN PRECISION FOR SIMULATING SPARSE HAMILTONIANS
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      EXPONENTIAL IMPROVEMENT IN PRECISION FOR SIMULATING SPARSE HAMILTONIANS
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
Hide All
[1] Aharonov D. and Ta-Shma A., ‘Adiabatic quantum state generation and statistical zero knowledge’, inProceedings of the 35th ACM Symposium on Theory of Computing (ACM, New York, 2003), 2029.
[2] Ambainis A., Childs A. M., Reichardt B. W., Špalek R. and Zhang S., ‘Any AND-OR formula of size N can be evaluated in time N 1/2+o (1) on a quantum computer’, SIAM J. Comput. 39(6) (2010), 25132530.
[3] Ambainis A., Magnin L., Roetteler M. and Roland J., ‘Symmetry-assisted adversaries for quantum state generation’, inProceedings of the 26th IEEE Conference on Computational Complexity (IEEE, Piscataway, NJ, 2011), 167177.
[4] Babbush R., Berry D. W., Kivlichan I. D., Wei A. Y., Love P. J. and Aspuru-Guzik A., ‘Exponentially more precise quantum simulation of fermions II: Quantum chemistry in the CI matrix representation’, Preprint, 2015, arXiv:1506.01029.
[5] Babbush R., Berry D. W., Kivlichan I. D., Wei A. Y., Love P. J. and Aspuru-Guzik A., ‘Exponentially more precise quantum simulation of fermions in second quantization’, New J. Phys. 18 (2016), 033032.
[6] Beals R., Buhrman H., Cleve R., Mosca M. and de Wolf R., ‘Quantum lower bounds by polynomials’, J. ACM 48(4) (2001), 778797.
[7] Belovs A., ‘Variations on quantum adversary’, Preprint, 2015, arXiv:1504.06943.
[8] Berry D. W., Ahokas G., Cleve R. and Sanders B. C., ‘Efficient quantum algorithms for simulating sparse Hamiltonians’, Commun. Math. Phys. 270(2) (2007), 359371.
[9] Berry D. W. and Childs A. M., ‘Black-box Hamiltonian simulation and unitary implementation’, Quantum Inf. Comput. 12(1–2) (2012), 2962.
[10] Berry D. W., Childs A. M., Cleve R., Kothari R. and Somma R. D., ‘Exponential improvement in precision for simulating sparse Hamiltonians’, inProceedings of the 46th ACM Symposium on Theory of Computing (ACM, New York, 2014), 283292.
[11] Berry D. W., Childs A. M., Cleve R., Kothari R. and Somma R. D., ‘Simulating Hamiltonian dynamics with a truncated Taylor series’, Phys. Rev. Lett. 114(9) (2015), 090502.
[12] Berry D. W., Childs A. M. and Kothari R., ‘Hamiltonian simulation with nearly optimal dependence on all parameters’, inProceedings of the 56th IEEE Symposium on Foundations of Computer Science (IEEE, Piscataway, NJ, 2015), 792809.
[13] Berry D. W., Cleve R. and Gharibian S., ‘Gate-efficient discrete simulations of continuous-time quantum query algorithms’, Quantum Inf. Comput. 14(1–2) (2014), 130.
[14] Childs A. M., ‘Quantum information processing in continuous time’, PhD Thesis, Massachusetts Institute of Technology, 2004.
[15] Childs A. M., ‘On the relationship between continuous- and discrete-time quantum walk’, Comm. Math. Phys. 294(2) (2010), 581603.
[16] Childs A. M., Cleve R., Deotto E., Farhi E., Gutmann S. and Spielman D. A., ‘Exponential algorithmic speedup by quantum walk’, inProceedings of the 35th ACM Symposium on Theory of Computing (ACM, New York, 2003), 5968.
[17] Childs A. M., Cleve R., Jordan S. P. and Yonge-Mallo D., ‘Discrete-query quantum algorithm for NAND trees’, Theory Comput. 5(5) (2009), 119123.
[18] Childs A. M., Gosset D. and Webb Z., ‘Universal computation by multi-particle quantum walk’, Science 339(6121) (2013), 791794.
[19] Childs A. M. and Kothari R., ‘Simulating sparse Hamiltonians with star decompositions’, inTheory of Quantum Computation, Communication, and Cryptography (TQC 2010), Lecture Notes in Computer Science, 6519 (Springer, Berlin, Heidelberg, 2011), 94103.
[20] Childs A. M. and Wiebe N., ‘Hamiltonian simulation using linear combinations of unitary operations’, Quantum Inf. Comput. 12(11–12) (2012), 901924.
[21] Christandl M., Datta N., Ekert A. and Landahl A. J., ‘Perfect state transfer in quantum spin networks’, Phys. Rev. Lett. 92(18) (2004), 187902.
[22] Clader B. D., Jacobs B. C. and Sprouse C. R., ‘Preconditioned quantum linear system algorithm’, Phys. Rev. Lett. 110(25) (2013), 250504.
[23] Cleve R., Gottesman D., Mosca M., Somma R. D. and Yonge-Mallo D., ‘Efficient discrete-time simulations of continuous-time quantum query algorithms’, inProceedings of the 41st ACM Symposium on Theory of Computing (ACM, New York, 2009), 409416.
[24] Farhi E., Goldstone J. and Gutmann S., ‘A quantum algorithm for the Hamiltonian NAND tree’, Theory Comput. 4(8) (2008), 169190.
[25] Farhi E., Goldstone J., Gutmann S. and Sipser M., ‘Limit on the speed of quantum computation in determining parity’, Phys. Rev. Lett. 81(24) (1998), 54425444.
[26] Farhi E. and Gutmann S., ‘Analog analogue of a digital quantum computation’, Phys. Rev. A 57(4) (1998), 24032406.
[27] Feynman R. P., ‘Simulating physics with computers’, Int. J. Theor. Phys. 21(6) (1982), 467488.
[28] Harrow A. W., Hassidim A. and Lloyd S., ‘Quantum algorithm for linear systems of equations’, Phys. Rev. Lett. 103(15) (2009), 150502.
[29] Huyghebaert J. and Raedt H. D., ‘Product formula methods for time-dependent Schrödinger problems’, J. Phys. A 23(24) (1990), 5777.
[30] Jordan C., ‘Essai sur la géométrie à n dimensions’, Bull. Soc. Math. France 3 (1875), 103174.
[31] Lee T., Mittal R., Reichardt B. W., Špalek R. and Szegedy M., ‘Quantum query complexity of state conversion’, inProceedings of the 52nd IEEE Symposium on Foundations of Computer Science (IEEE, Piscataway, NJ, 2011), 344353.
[32] Lloyd S., ‘Universal quantum simulators’, Science 273(5278) (1996), 10731078.
[33] Marriott C. and Watrous J., ‘Quantum Arthur–Merlin games’, Comput. Complexity 14(2) (2005), 122152.
[34] Mochon C., ‘Hamiltonian oracles’, Phys. Rev. A 75(4) (2007), 042313.
[35] Motwani R. and Raghavan P., Randomized Algorithms (Cambridge University Press, 1995).
[36] Nagaj D., Wocjan P. and Zhang Y., ‘Fast amplification of QMA’, Quantum Inf. Comput. 9(11–12) (2009), 10531068.
[37] Paetznick A. and Svore K. M., ‘Repeat-until-success: Non-deterministic decomposition of single-qubit unitaries’, Quantum Inf. Comput. 14(15–16) (2014), 12771301.
[38] Poulin D., Qarry A., Somma R. D. and Verstraete F., ‘Quantum simulation of time-dependent Hamiltonians and the convenient illusion of Hilbert space’, Phys. Rev. Lett. 106(17) (2011), 170501.
[39] Scherer A., Valiron B., Mau S.-C., Alexander S., van den Berg E. and Chapuran T. E., ‘Concrete resource analysis of the quantum linear system algorithm used to compute the electromagnetic scattering cross section of a 2D target’, Quantum Inf. Process. 16(3) (2017), 60.
[40] Suzuki M., ‘General theory of fractal path integrals with applications to many-body theories and statistical physics’, J. Math. Phys. 32(2) (1991), 400407.
[41] Watrous J., ‘Zero-knowledge against quantum attacks’, SIAM J. Comput. 39(1) (2009), 2538.
[42] Watson G. N., A Treatise on the Theory of Bessel Functions (Cambridge University Press, Cambridge, UK, 1922).
[43] Wiebe N., Berry D. W., Høyer P. and Sanders B. C., ‘Simulating quantum dynamics on a quantum computer’, J. Phys. A 44(44) (2011), 445308.
[44] Wiebe N. and Roetteler M., ‘Quantum arithmetic and numerical analysis using Repeat-Until-Success circuits’, Quantum Inf. Comput. 16(1–2) (2016), 134178.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Forum of Mathematics, Sigma
  • ISSN: -
  • EISSN: 2050-5094
  • URL: /core/journals/forum-of-mathematics-sigma
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 205 *
Loading metrics...

Abstract views

Total abstract views: 284 *
Loading metrics...

* Views captured on Cambridge Core between 2nd March 2017 - 20th November 2017. This data will be updated every 24 hours.