Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-gbqfq Total loading time: 0.321 Render date: 2022-05-23T10:46:35.952Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

FINITE $p$-GROUPS WITH SMALL AUTOMORPHISM GROUP

Published online by Cambridge University Press:  20 April 2015

JON GONZÁLEZ-SÁNCHEZ
Affiliation:
Departamento de Matemáticas, Facultad de Ciencia y Tecnología, Universidad del País Vasco-Euskal Herriko Unibertsitatea, Apartado 644 48080 Bilbao, Spain
ANDREI JAIKIN-ZAPIRAIN
Affiliation:
Departamento de Matemáticas, Universidad Autónoma de Madrid, and Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, 28049-Madrid, Spain; andrei.jaikin@uam.es

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For each prime $p$ we construct a family $\{G_{i}\}$ of finite $p$-groups such that $|\text{Aut}(G_{i})|/|G_{i}|$ tends to zero as $i$ tends to infinity. This disproves a well-known conjecture that $|G|$ divides $|\text{Aut}(G)|$ for every nonabelian finite $p$-group $G$.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s) 2015

References

Bray, J. N. and Wilson, R. A., ‘On the orders of automorphism groups of finite groups’, Bull. Lond. Math. Soc. 37 (2005), 381385.CrossRefGoogle Scholar
Bray, J. N. and Wilson, R. A., ‘On the orders of automorphism groups of finite groups II’, J. Group Theory 9 (2006), 537545.CrossRefGoogle Scholar
Buckley, J., ‘Automorphism groups of isoclinic p-groups’, J. Lond. Math. Soc. (2) 12 (1975/76), 3744.CrossRefGoogle Scholar
Davitt, R. M., ‘The automorphism group of a finite metacyclic p-group’, Proc. Amer. Math. Soc. 25 (1970), 876879.Google Scholar
Davitt, R. M., ‘The automorphism group of finite p-abelian p-groups’, Illinois J. Math. 16 (1972), 7685.Google Scholar
Davitt, R. M., ‘On the automorphism group of a finite p-group with a small central quotient’, Canad. J. Math. 32 (1980), 11681176.CrossRefGoogle Scholar
Davitt, R. M. and Otto, A. D., ‘On the automorphism group of a finite p-group with the central quotient metacyclic’, Proc. Amer. Math. Soc. 30 (1971), 467472.Google Scholar
Davitt, R. M. and Otto, A. D., ‘On the automorphism group of a finite modular p-group’, Proc. Amer. Math. Soc. 35 (1972), 399404.Google Scholar
Dixon, J., du Sautoy, M., Mann, A. and Segal, D., Analytic Pro-p Groups, 2nd edn (Cambridge University Press, Cambridge, 1999).CrossRefGoogle Scholar
Eick, B., ‘Automorphism groups of 2-groups’, J. Algebra 300 (2006), 91101.CrossRefGoogle Scholar
Exarchakos, T., ‘LA-groups’, J. Math. Soc. Japan 33 (1981), 185190.CrossRefGoogle Scholar
Exarchakos, T., ‘On p-groups of small order’, Publ. Inst. Math. (Beograd) (N.S.) 45(59) (1989), 7376.Google Scholar
Faudree, R., ‘A note on the automorphism group of a p-group’, Proc. Amer. Math. Soc. 19 (1968), 13791382.Google Scholar
Fouladi, S., Jamali, A. R. and Orfi, R., ‘Automorphism groups of finite p-groups of coclass 2’, J. Group Theory 10 (2007), 437440.CrossRefGoogle Scholar
Gaschütz, W., ‘Kohomologische Trivialitäten und äussere Automorphismen von p-Gruppen’, Math. Z. 88 (1965), 432433.CrossRefGoogle Scholar
Gavioli, N., ‘The number of automorphisms of groups of order p 7’, Proc. R. Irish Acad. Sect. A 93 (1993), 177184.Google Scholar
Green, J. A., ‘On the number of automorphisms of a finite group’, Proc. R. Soc. Lond. A 237 (1956), 574581.CrossRefGoogle Scholar
Hummel, K. G., ‘The order of the automorphism group of a central product’, Proc. Amer. Math. Soc. 47 (1975), 3740.CrossRefGoogle Scholar
Hyde, K. H., ‘On the order of the Sylow subgroups of the automorphism group of a finite group’, Glasg. Math. J. 11 (1970), 8896.CrossRefGoogle Scholar
Lazard, M., ‘Groupes analytiques p-adiques’, Publ. Math. Inst. Hautes Études Sci. 26 (1965), 389603.Google Scholar
Ledermann, W. and Neumann, B. H., ‘On the order of the automorphism group of a finite group I’, Proc. R. Soc. Lond. A 233 (1956), 494506.CrossRefGoogle Scholar
Luks, E., ‘Lie algebras with only inner derivations need not be complete’, J. Algebra 15 (1970), 280282.CrossRefGoogle Scholar
Mazurov, V. D. and Khukhro, E. I., The Kourovka Notebook. Unsolved Problems in Group Theory, 17th augmented edn (Russian Academy of Sciences Siberian Division, Institute of Mathematics, 2010).Google Scholar
Neukirch, J., Schmidt, A. and Wingberg, K., Cohomology of Number Fields, 2nd edn, Grundlehren der Mathematischen Wissenschaften, 323 (Springer, Berlin, 2008).CrossRefGoogle Scholar
Otto, A. D., ‘Central automorphisms of a finite p-group’, Trans. Amer. Math. Soc. 125 (1966), 280287.Google Scholar
Ree, R., ‘The existence of outer automorphisms of some groups II’, Proc. Amer. Math. Soc. 9 (1958), 105109.Google Scholar
Sato, T., ‘The derivations of the Lie algebras’, Tôhoku Math. J. (2) 23 (1971), 2136.CrossRefGoogle Scholar
Schenkman, E., ‘The existence of outer automorphisms of some nilpotent groups of class 2’, Proc. Amer. Math. Soc. 6 (1955), 611.Google Scholar
Symonds, P. and Weigel, T., ‘Cohomology of p-adic analytic groups’, inNew Horizons in Pro-p Groups, Progress in Mathematics, 184 (Birkhäuser Boston, Boston, MA, 2000), 349410.CrossRefGoogle Scholar
Thillaisundaram, A., ‘The automorphism group for p-central p-groups’, Int. J. Group Theory 1 (2012), 5971.Google Scholar
Yadav, M. K., ‘On automorphisms of finite p-groups’, J. Group Theory 10 (2007), 859866.CrossRefGoogle Scholar
You have Access
Open access
3
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

FINITE $p$-GROUPS WITH SMALL AUTOMORPHISM GROUP
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

FINITE $p$-GROUPS WITH SMALL AUTOMORPHISM GROUP
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

FINITE $p$-GROUPS WITH SMALL AUTOMORPHISM GROUP
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *