Skip to main content
×
×
Home

LOCALLY NORMAL SUBGROUPS OF TOTALLY DISCONNECTED GROUPS. PART II: COMPACTLY GENERATED SIMPLE GROUPS

  • PIERRE-EMMANUEL CAPRACE (a1), COLIN D. REID (a2) and GEORGE A. WILLIS (a2)
Abstract

We use the structure lattice, introduced in Part I, to undertake a systematic study of the class $\mathscr{S}$ consisting of compactly generated, topologically simple, totally disconnected locally compact groups that are nondiscrete. Given $G\in \mathscr{S}$ , we show that compact open subgroups of $G$ involve finitely many isomorphism types of composition factors, and do not have any soluble normal subgroup other than the trivial one. By results of Part I, this implies that the centralizer lattice and local decomposition lattice of $G$ are Boolean algebras. We show that the $G$ -action on the Stone space of those Boolean algebras is minimal, strongly proximal, and microsupported. Building upon those results, we obtain partial answers to the following key problems: Are all groups in $\mathscr{S}$ abstractly simple? Can a group in $\mathscr{S}$ be amenable? Can a group in $\mathscr{S}$ be such that the contraction groups of all of its elements are trivial?

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      LOCALLY NORMAL SUBGROUPS OF TOTALLY DISCONNECTED GROUPS. PART II: COMPACTLY GENERATED SIMPLE GROUPS
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      LOCALLY NORMAL SUBGROUPS OF TOTALLY DISCONNECTED GROUPS. PART II: COMPACTLY GENERATED SIMPLE GROUPS
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      LOCALLY NORMAL SUBGROUPS OF TOTALLY DISCONNECTED GROUPS. PART II: COMPACTLY GENERATED SIMPLE GROUPS
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
Hide All
[1] Abels H., ‘Kompakt definierbare topologische Gruppen’, Math. Ann. 197 (1972), 221233.
[2] Abels H., ‘Specker-Kompaktifizierungen von lokal kompakten topologischen Gruppen’, Math. Z. 135 (1974), 325361.
[3] Arens R., ‘Topologies for homeomorphism groups’, Amer. J. Math. 68 (1946), 593610.
[4] Banks C., Elder M. and Willis G. A., ‘Simple groups of automorphisms of trees determined by their actions on finite subtrees’, J. Group Theory 18(2) (2015), 235261.
[5] Barnea Y., Ershov M. and Weigel T., ‘Abstract commensurators of profinite groups’, Trans. Amer. Math. Soc. 363(10) (2011), 53815417.
[6] Baumgartner U., Ramagge J. and Rémy B., ‘Contraction groups in complete Kac–Moody groups’, Groups Geom. Dyn. 2(3) (2008), 337352.
[7] Baumgartner U. and Willis G. A., ‘Contraction groups and scales of automorphisms of totally disconnected locally compact groups’, Israel J. Math. 142 (2004), 221248.
[8] Belyaev V. V., ‘Locally finite groups with a finite nonseparable subgroup (Russian) Sibirsk’, Mat. Ž. 34(2) (1993), 2341. 226, 233. Translation in Siberian Math. J. 34 (1993), no. 2, 218–232 (1994).
[9] Bieri R. and Strebel R., On Groups of PL-Homeomorphisms of the Real Line, Mathematical Surveys and Monographs, 215 (American Mathematical Society, Providence, RI, 2016).
[10] Borel A. and Tits J., ‘Homomorphismes ‘abstraits’ de groupes algébriques simples’, Ann. of Math. 97 (1973), 499571.
[11] Bourbaki N., ‘Groupes et algèbres de Lie’, inChapitre II: Algèbres de Lie libres. Chapitre III: Groupes de Lie, Actualités Scientifiques et Industrielles, 1349 (Hermann, Paris, 1972), 320.
[12] Bouziad A. and Troallic J.-P., ‘Some remarks about strong proximality of compact flows’, Colloq. Math. 115(2) (2009), 159170.
[13] Bruhat F. and Tits J., ‘Groupes réductifs sur un corps local’, Publ. Math. Inst. Hautes Études Sci. 41 (1972), 5251.
[14] Burger M. and Mozes Sh., ‘Groups acting on trees: from local to global structure’, Publ. Math. Inst. Hautes Études Sci. 92 (2000), 113150.
[15] Caprace P.-E., ‘Automorphism groups of right-angled buildings: simplicity and local splittings’, Fund. Math. 224 (2014), 1751.
[16] Caprace P.-E. and De Medts T., ‘Simple locally compact groups acting on trees and their germs of automorphisms’, Transform. Groups 16(2) (2011), 375411.
[17] Caprace P.-E. and De Medts T., ‘Trees, contraction groups, and Moufang sets’, Duke Math. J. 162(13) (2013), 24132449.
[18] Caprace P.-E. and Monod N., ‘Decomposing locally compact groups into simple pieces’, Math. Proc. Cambridge Philos. Soc. 150(1) (2011), 97128.
[19] Caprace P.-E., Reid C. D. and Willis G. A., ‘Locally normal subgroups of simple locally compact groups’, C. R. Acad. Sci. Paris Ser. I 351(17–18) (2013), 657661.
[20] Caprace P.-E., Reid C. D. and Willis G. A., ‘Limits of contraction groups and the Tits core’, J. Lie Theory 24(4) (2014), 957967.
[21] Caprace P.-E., Reid C. D. and Willis G. A., ‘Locally normal subgroups of totally disconnected groups; Part I: general theory’, Forum of Mathematics, Sigma 5 (2017), doi:10.1017/fms.2017.9.
[22] Caprace P.-E. and Stulemeijer T., ‘Totally disconnected locally compact groups with a linear open subgroup’, Int. Math. Res. Not. IMRN 24 (2015), 1380013829.
[23] Cluckers R., Cornulier Y., Louvet N., Tessera R. and Valette A., ‘The Howe–Moore property for real and p-adic groups’, Math. Scand. 109(2) (2011), 201224.
[24] Cornulier Y. and de la Harpe P., Metric Geometry of Locally Compact Groups, EMS Tracts in Mathematics, 25 (European Math. Soc., Zurich, 2016).
[25] De Medts T., Silva A. C. and Struyve K., ‘Universal groups for right-angled buildings’, Preprint, 2016, arXiv:1603.04754.
[26] Epstein D. B. A., ‘The simplicity of certain groups of homeomorphisms’, Compos. Math. 22 (1970), 165173.
[27] Furstenberg H., ‘Boundary theory and stochastic processes on homogeneous spaces’, inHarmonic Analysis on Homogeneous Spaces, Proc. Sympos. Pure Math., XXVI (Williams Coll., Williamstown, Mass., 1972) (Amer. Math. Soc., Providence, RI, 1973), 193229.
[28] Garrido A., ‘On the congruence subgroup problem for branch groups’, Israel J. Math. 216(1) (2016), 113.
[29] Glasner S., ‘Topological dynamics and group theory’, Trans. Amer. Math. Soc. 187 (1974), 327334.
[30] Gruenberg K. W., ‘Residual properties of infinite soluble groups’, Proc. Lond. Math. Soc. 7(3) (1957), 2962.
[31] Haglund F. and Paulin F., ‘Simplicité de groupes d’automorphismes d’espaces à courbure négative’, inThe Epstein Birthday Schrift, Geom. Topol. Monogr., 1 (Geom. Topol. Publ., Coventry, 1998), 181248. (electronic).
[32] Juschenko K. and Monod N., ‘Cantor systems, piecewise translations and simple amenable groups’, Ann. of Math. (2) 178(2) (2013), 775787.
[33] Kakutani S. and Kodaira K., ‘Über das Haarsche Mass in der lokal bikompakten Gruppe’, Proc. Imp. Acad. Tokyo 20 (1944), 444450.
[34] Kapoudjian C., ‘Simplicity of Neretin’s group of spheromorphisms’, Ann. Inst. Fourier (Grenoble) 49(4) (1999), 12251240.
[35] Kramer L., ‘The topology of a semisimple Lie group is essentially unique’, Adv. Math. 228(5) (2011), 26232633.
[36] Lazarovich N., ‘On regular CAT(0) cube complexes’, Preprint, 2014, arXiv:1411.0178.
[37] Le Boudec A., ‘Adrien Groups acting on trees with almost prescribed local action’, Comment. Math. Helv. 91(2) (2016), 253293.
[38] Malcev A., ‘On isomorphic matrix representations of infinite groups’, Mat. Sb. 8(50) (1940), 405422 (Russian).
[39] Margulis G., Discrete Subgroups of Semi-Simple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 17 (Springer, Berlin, 1991).
[40] Marquis T., ‘Abstract simplicity of locally compact Kac–Moody groups’, Compos. Math. 150(4) (2014), 713728.
[41] Möller R. and Vonk J., ‘Normal subgroups of groups acting on trees and automorphism groups of graphs’, J. Group Theory 15(6) (2012), 831850.
[42] Monod N., Continuous Bounded Cohomology of Locally Compact Groups, Lecture Notes in Mathematics, 1758 (Springer, Berlin, 2001).
[43] Montgomery D. and Zippin L., Topological Transformation Groups, (Interscience Publishers, New York–London, 1955).
[44] Nekrashevych V., ‘Finitely presented groups associated with expanding maps’. Preprint, 2013, arXiv:1312.5654.
[45] Nekrashevych V., ‘Palindromic subshifts and simple periodic groups of intermediate growth’, Preprint, 2016, arXiv:1601.01033.
[46] Neretin Yu. A., ‘On combinatorial analogs of the group of diffeomorphisms of the circle’, Izv. Math. 41(2) (1993), 337349 (Russian).
[47] Nikolov N., ‘Algebraic properties of profinite groups’, Preprint, 2011, arXiv:1108.5130.
[48] Nikolov N. and Segal D., ‘Generators and commutators in finite groups; abstract quotients of compact groups’, Invent. Math. 190(3) (2012), 513602.
[49] Reid C. D. and Wesolek P., ‘Homomorphisms into totally disconnected, locally compact groups with dense image’, Preprint, 2015, arXiv:1509.00156v1.
[50] Reid C. D. and Wesolek P., ‘The essentially chief series of a compactly generated locally compact group’, Preprint, 2015, arXiv:1509.06593v4.
[51] Rémy B., ‘Topological simplicity, commensurator superrigidity and non-linearities of Kac–Moody groups’, Geom. Funct. Anal. 14(4) (2004), 810852. With an appendix by P. Bonvin.
[52] Rémy B. and Ronan M., ‘Topological groups of Kac–Moody type, right-angled twinnings and their lattices’, Comment. Math. Helv. 81(1) (2006), 191219.
[53] Ribes L. and Zalesskii P., Profinite Groups, 2nd edn, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 40 (Springer, Berlin, 2010).
[54] Riehm C., ‘The congruence subgroup problem over local fields’, Amer. J. Math. 92 (1970), 771778.
[55] Rosenlicht M., ‘On a result of Baer’, Proc. Amer. Math. Soc. 13 (1962), 99101.
[56] Rubin M., ‘On the reconstruction of topological spaces from their groups of homeomorphisms’, Trans. Amer. Math. Soc. 312(2) (1989), 487538.
[57] Schur J., ‘Über die Darstellung der endlichen Gruppen durch gebrochen lineare Substitutionen’, J. Reine Angew. Math. 127 (1904), 2050.
[58] Shalom Y. and Willis G. A., ‘Commensurated subgroups of arithmetic groups, totally disconnected groups and adelic rigidity’, Geom. Funct. Anal. 23(5) (2013), 16311683.
[59] Smith S. M., ‘A product for permutation groups and topological groups’, Preprint, 2015, arXiv:1407.5697v2.
[60] Thomas S. and Velickovic B., ‘On the complexity of the isomorphism relation for finitely generated groups’, J. Algebra 217(1) (1999), 352373.
[61] Tits J., ‘Algebraic and abstract simple groups’, Ann. of Math. 80 (1964), 313329.
[62] Tits J., ‘Sur le groupe des automorphismes d’un arbre’, inEssays on Topology and Related Topics (Mémoires dédiés à Georges de Rham) (Springer, New York, 1970), 188211.
[63] Tits J., ‘Reductive groups over local fields’, inAutomorphic Forms, Representations and L-Functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII (Amer. Math. Soc., Providence, RI, 1979), 2969.
[64] Tits J., ‘Uniqueness and presentation of Kac–Moody groups over fields’, J. Algebra 105(2) (1987), 542573.
[65] Ušakov V. I., ‘Topological FC -groups’, Sibirsk. Mat. Ž. 4 (1963), 11621174.
[66] Wang S. P., ‘Compactness properties of topological groups’, Trans. Amer. Math. Soc. 154 (1971), 301314.
[67] Wesolek P., ‘Elementary totally disconnected locally compact groups’, Proc. Lond. Math. Soc. 110(6) (2015), 13871434.
[68] Wesolek P., ‘Commensurated subgroups in finitely generated branch groups’, J. Group Theory 20(2) (2017), 385392.
[69] Willis G. A., ‘The number of prime factors of the scale function on a compactly generated group is finite’, Bull. Lond. Math. Soc. 33(2) (2001), 168174.
[70] Willis G. A., ‘Compact open subgroups in simple totally disconnected groups’, J. Algebra 312(1) (2007), 405417.
[71] Willis G. A., ‘The nub of an automorphism of a totally disconnected, locally compact group’, Ergodic Theory Dynam. Systems 34(4) (2014), 13651394.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Forum of Mathematics, Sigma
  • ISSN: -
  • EISSN: 2050-5094
  • URL: /core/journals/forum-of-mathematics-sigma
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 63 *
Loading metrics...

Abstract views

Total abstract views: 139 *
Loading metrics...

* Views captured on Cambridge Core between 22nd May 2017 - 17th January 2018. This data will be updated every 24 hours.