Skip to main content Accesibility Help
×
×
Home

Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods

  • GUSTAVO DE LOS CAMPOS (a1) (a2), DANIEL GIANOLA (a1), GUILHERME J. M. ROSA (a1), KENT A. WEIGEL (a1) and JOSÉ CROSSA (a2)...
Summary

Prediction of genetic values is a central problem in quantitative genetics. Over many decades, such predictions have been successfully accomplished using information on phenotypic records and family structure usually represented with a pedigree. Dense molecular markers are now available in the genome of humans, plants and animals, and this information can be used to enhance the prediction of genetic values. However, the incorporation of dense molecular marker data into models poses many statistical and computational challenges, such as how models can cope with the genetic complexity of multi-factorial traits and with the curse of dimensionality that arises when the number of markers exceeds the number of data points. Reproducing kernel Hilbert spaces regressions can be used to address some of these challenges. The methodology allows regressions on almost any type of prediction sets (covariates, graphs, strings, images, etc.) and has important computational advantages relative to many parametric approaches. Moreover, some parametric models appear as special cases. This article provides an overview of the methodology, a discussion of the problem of kernel choice with a focus on genetic applications, algorithms for kernel selection and an assessment of the proposed methods using a collection of 599 wheat lines evaluated for grain yield in four mega environments.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: 1665 University Boulevard, Ryals Public Health Building 414, AL 35294, USA. e-mail: gcampos@uab.edu
References
Hide All
Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American Mathematical Society 68, 337404.
Bernardo, R. & Yu, J. (2007). Prospects for genome-wide selection for quantitative traits in maize. Crop Science 47, 10821090.
Calus, M. P. L. & Veerkamp, R. F. (2007). Accuracy of breeding values when using and ignoring the polygenic effect in genomic breeding value estimation with a marker density of one SNP per cM. Journal of Animal Breeding and Genetics 124, 362388.
Cockerham, C. C. (1954). An extension of the concept of partitioning hereditary variance for analysis of covariance among relatives when epistasis is present. Genetics 39, 859882.
Corrada Bravo, H., Lee, K. E., Klein, B. E. K., Klein, R., Iyengar, S. K. & Wahba, G. (2009). Examining the relative influence of familial, genetic and environmental covariate information in flexible risk models. Proceedings of the National Academy of Sciences, USA 106, 81288133.
Cressie, N. (1993). Statistics for Spatial Data. New York Wiley.
de los Campos, G., Gianola, D. & Rosa, G. J. M. (2009 a). Reproducing kernel Hilbert spaces regression: a general framework for genetic evaluation. Journal of Animal Science 87, 18831887.
de los Campos, G., Naya, H., Gianola, D., Crossa, J., Legarra, A., Manfredi, E., Weigel, K. & Cotes, J. M. (2009 b). Predicting quantitative traits with regression models for dense molecular markers and pedigrees. Genetics 182, 375385.
de los Campos, G., Gianola, D., Rosa, G. J. M., Weigel, K. A., Vazquez, A. I. & Allison, D. B. (2010). Semi-Parametric Marker-enabled Prediction of Genetic Values using Reproducing Kernel Hilbert Spaces methods. In: Proceedings of the 9th World Congress on Genetics Applied to Livestock Production. Leipzig, Germany, in press.
Eding, J. H. & Meuwissen, T. H. E. (2001). Marker based estimates of between and within population kinships for the conservation of genetic diversity. Journal of Animal Breeding and Genetics 118, 141159.
Fernando, R. L. & Grossman, M. (1989). Marker assisted selection using best linear unbiased prediction. Genetics Selection Evolution 21, 467477.
Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society of Edinburgh 52, 399433.
Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. (2004). Bayesian Data Analysis. London, UK: Chapman and Hall.
Gianola, D. & de los Campos, G. (2008). Inferring genetic values for quantitative traits non-parametrically. Genetics Research 90, 525540.
Gianola, D. & van Kaam, J. B. C. H. M. (2008). Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics 178, 22892303.
Gianola, D., Fernando, R. L. & Stella, A. (2006). Genomic-assisted prediction of genetic value with semiparametric procedures. Genetics 173, 17611776.
Gianola, D., de los Campos, G., Hill, W. G., Manfredi, E. & Fernando, R. L. (2009). Additive genetic variability and the Bayesian alphabet. Genetics 183, 347363.
Golub, G. H. & Van Loan, C. F. (1996). Matrix Computations 3rd ed. Baltimor and London: The Johns Hopkins University Press.
Habier, D., Fernando, R. L. & Dekkers, J. C. M. (2007). The impact of genetic relationships information on genome-assisted breeding values. Genetics 177, 23892397.
Harville, D. A. (1983). Discussion on a section on interpolation and estimation. In David, H. A. & David, H. T. (ed.). Statistics an Appraisal, pp. 281286. Ames, IA: The Iowa State University Press.
Hastie, T., Tibshirani, R. & Friedman, J. (2009). The Elements of Statistical Learning (Data Mining, Inference, and Prediction) 2nd edition. New York, NY: Springer.
Hayes, B. J. & Goddard, M. E. (2008). Prediction of breeding values using marker-derived relationship matrices. Journal of Animal Science 86, 20892092.
Heffner, E. L., Sorrells, M. E. & Jannink, J. L. (2009). Genomic selection for crop improvement. Crop Science 49, 112.
Henderson, C. R. (1975). Best linear unbiased estimation and prediction under a selection model. Biometrics 31, 423447.
Hoerl, A. E. & Kennard, R. W. (1970 a). Ridge regression: Biased estimation for non-orthogonal problems. Technometrics 12, 5567.
Hoerl, A. E. & Kennard, R. W. (1970 b). Ridge regression: Biased estimation for non-orthogonal problems. Technometrics 12, 6982.
Kempthorne, O. (1954). The correlation between relatives in a random mating population. Proceedings of the Royal Society of London B 143, 103113.
Kimeldorf, G. S. & Wahba, G. (1970). A correspondence between Bayesian estimation on stochastic process and smoothing by splines. Annals of Mathematical Statistics, 41, 495502.
Kimeldorf, G. S. & Wahba, G. (1971). Some results on Tchebycheffian spline functions. Journal of Mathematic Analysis and Applications 33, 8295.
Kondor, R. I. & Lafferty, J. (2002). Diffusion kernels on graphs and other discrete inputs. Proceedings of 19th International Conference on Machine Learning (ICML-2002).
Long, N., Gianola, D., Rosa, G., Weigel, K., Kranis, A. & González-Recio, O. (2010). Radial basis function regression methods for predicting quantitative traits using SNP markers. Genetics Research, in press.
Lynch, M. & Ritland, K. (1999). Estimation of pairwise relatedness with molecular markers. Genetics 152, 17531766.
Mallick, B., Ghosh, D. & Ghosh, M. (2005). Bayesian kernel-based classification of microarray data. Journal of the Royal Statistical Society, Series B 2, 219234.
Meuwissen, T. H. E., Hayes, B. J. & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 18191829.
McLaren, C. G., Bruskiewich, R., Portugal, A. M. & Cosico, A. B. (2005). The international Rice information system. A platform for meta-analysis of rice crop data. Plant Physiology 139, 637642.
Park, T. & Casella, G. (2008). The Bayesian LASSO. Journal of the American Statistical Association 103, 681686.
Ritland, K. (1996). Estimators for pairwise relatedness and individual inbreeding coefficients. Genetics Research 67, 175186.
Shawe-Taylor, J. & Cristianini, N. (2004). Kernel Methods for Pattern Analysis. Cambridge, UK: Cambridge University Press.
Sorensen, D. & Gianola, D. (2002). Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics. New York: Springer-Verlag.
Speed, T. (1991). [That BLUP is a good thing: the estimation of random effects]: Comment. Statistical Science 6, 4244.
Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society, B 58, 267288.
Van Raden, P. M. (2007). Genomic measures of relationship and inbreeding. Interbull Bulletin 37, 3336.
Vapnik, V. (1998). Statistical Learning Theory. New York, NY: Wiley.
Wahba, G. (1990). Spline Models for Observational Data. Philadelphia, PA: Society for Industrial and applied Mathematics.
Wright, S. (1921). Systems of mating. I. The biometric relations between parents and offspring. Genetics 6, 111123.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Genetics Research
  • ISSN: 0016-6723
  • EISSN: 1469-5073
  • URL: /core/journals/genetics-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed