Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-wr4x4 Total loading time: 0.931 Render date: 2023-01-31T20:47:23.158Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

BLOCKS WITH A QUATERNION DEFECT GROUP OVER A 2-ADIC RING: THE CASE Ã4

Published online by Cambridge University Press:  01 January 2007

THORSTEN HOLM
Affiliation:
Department of Pure Mathematics, University of Leeds, Leeds, LS2 9JT, U.K.
RADHA KESSAR
Affiliation:
Department of Mathematical Sciences, Meston Building, Aberdeen, AB24 3UE, U.K. e-mail: linckelm@maths.abdn.ac.uk
MARKUS LINCKELMANN
Affiliation:
Department of Mathematical Sciences, Meston Building, Aberdeen, AB24 3UE, U.K. e-mail: linckelm@maths.abdn.ac.uk
Rights & Permissions[Opens in a new window]

Abstract.

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Except for blocks with a cyclic or Klein four defect group, it is not known in general whether the Morita equivalence class of a block algebra over a field of prime characteristic determines that of the corresponding block algebra over a p-adic ring. We prove this to be the case when the defect group is quaternion of order 8 and the block algebra over an algebraically closed field k of characteristic 2 is Morita equivalent to 4. The main ingredients are Erdmann's classification of tame blocks [6] and work of Cabanes and Picaronny [4, 5] on perfect isometries between tame blocks.

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2007

References

REFERENCES

1.Broué, M., Isométries parfaites, types de blocs, catégories dérivées, Astérisque 181–182 (1990), 6192.Google Scholar
2.Broué, M., Isométries de caractères et equivalences de Morita ou dérivées, Publ. Math. IHES 71 (1990), 4563.CrossRefGoogle Scholar
3.Broué, M. and Puig, L., A Frobenius theorem for blocks, Invent. Math. 56 (1980), 117128.CrossRefGoogle Scholar
4.Cabanes, M. and Picaronny, C., Types of blocks with dihedral or quaternion defect groups, J. Fac. Sci. Univ. Tokyo 39 (1992), 141161.Google Scholar
5.Cabanes, M. and Picaronny, C., Corrected version of: Types of blocks with dihedral or quaternion defect groups, http://www.math.jussieu.fr/~cabanes/printlist.html (1999).Google Scholar
6.Erdmann, K., Blocks of tame representation type and related algebras, Lecture Notes in Mathematics No. 1428 (Springer-Verlag, 1990).Google Scholar
7.Feit, W., The representation theory of finite groups (North-Holland, Amsterdam, 1982).Google Scholar
8.Puig, L., Nilpotent blocks and their source algebras, Invent. Math. 93 (1988), 77116.CrossRefGoogle Scholar
9.Thévenaz, J., G-algebras and modular representation theory (Oxford University Press, 1995).Google Scholar
You have Access
3
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

BLOCKS WITH A QUATERNION DEFECT GROUP OVER A 2-ADIC RING: THE CASE Ã4
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

BLOCKS WITH A QUATERNION DEFECT GROUP OVER A 2-ADIC RING: THE CASE Ã4
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

BLOCKS WITH A QUATERNION DEFECT GROUP OVER A 2-ADIC RING: THE CASE Ã4
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *