Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-jp8mt Total loading time: 0.756 Render date: 2022-12-03T17:28:09.756Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

n-FREE MODULES OVER COMPLETE DISCRETE VALUATION DOMAINS WITH ALMOST TRIVIAL DUAL*

Published online by Cambridge University Press:  25 February 2013

RÜDIGER GÖBEL
Affiliation:
Fakultät für Mathematik, Universität Duisburg-Essen Campus Essen, 45117 Essen, Germany e-mail: ruediger.goebel@uni-due.de
SAHARON SHELAH
Affiliation:
The Hebrew University, Givat Ram, Jerusalem 91904, Israel, and Rutgers University, New Brunswick, NJ 08901, USA e-mail: Shelah@math.huji.ac.il
LUTZ STRÜNGMANN
Affiliation:
Fakultät für Informatik, Hochschule Mannheim 68163 Mannheim, Germany e-mail: l.struengmann@hs-mannheim.de
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A module M over a commutative ring R has an almost trivial dual if there is no homomorphism from M onto a free R-module of countable infinite rank. Using a new combinatorial principle (the ℵn-Black Box), which is provable in ordinary set theory, we show that for every natural number n, there exist arbitrarily large ℵn-free R-modules with almost trivial duals, when R is a complete discrete valuation domain. A corresponding result for torsion modules is also obtained.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2013

Footnotes

*

Publication (GbShSm:981) in the second author's list of publications.

References

REFERENCES

1.Corner, A. L. S., Every countable reduced torsion-free ring is an endomorphism ring, Proc. Lond. Math. Soc. 13 (3) (1963), 687710.CrossRefGoogle Scholar
2.Corner, A. L. S. and Göbel, R., Prescribing endomorphism algebras – a unified treatment, Proc. Lond. Math. Soc. 50 (3) (1985), 447479.CrossRefGoogle Scholar
3.Dugas, M. and Göbel, R., Almost Σ-cyclic abelian p-groups in L, in Abelian groups and modules, proceedings of an international conference, Udine, CISM Courses and Lectures, vol. 287 (Springer, New York, 1984), 87105.Google Scholar
4.Eklof, P. C. and Mekler, A. H., Almost free modules, Revised ed. (North–Holland, New York, 2002).CrossRefGoogle Scholar
5.Fuchs, L., Infinite abelian groups, vol. 1 & 2 (Academic Press, New York, 1970, 1973).Google Scholar
6.Göbel, R., Herden, D. and Shelah, S., Prescribing endomorphism algebras of $\aleph_n$-free modules (to be submitted).Google Scholar
7.Göbel, R. and May, W., Independence in completions and endomorphism algebras, Forum Math. 1 (1989), 215226.CrossRefGoogle Scholar
8.Göbel, R. and Paras, A., Splitting off free summands of torsion-free modules over complete DVRs, Glasgow Math. J. 44 (2002), 349351.CrossRefGoogle Scholar
9.Göbel, R. and Shelah, S., $\aleph_n$-free modules with trivial dual, Results Math. 54 (2009), 5364.CrossRefGoogle Scholar
10.Göbel, R. and Trlifaj, J., Endomorphism algebras and approximations of modules, Expositions in Mathematics, vol. 41 (Walter de Gruyter Verlag, Berlin, Germany, 2006).CrossRefGoogle Scholar
11.Kaplansky, I., Infinite abelian groups (University of Michigan Press, Ann Arbor, MI, 1971).Google Scholar
12.Krylov, P. A. and Tuganbaev, A. A., Modules over discrete valuation domains, Expositions in Mathematics, vol 43 (Walter de Gruyter Verlag, Berlin, Germany, 2008).CrossRefGoogle Scholar
13.Shelah, S., $\aleph_n$-free abelian groups with no non-zero homomorphisms to ℤ, CUBO Math. J. 9 (2007), 5979.Google Scholar
You have Access
4
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

n-FREE MODULES OVER COMPLETE DISCRETE VALUATION DOMAINS WITH ALMOST TRIVIAL DUAL*
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

n-FREE MODULES OVER COMPLETE DISCRETE VALUATION DOMAINS WITH ALMOST TRIVIAL DUAL*
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

n-FREE MODULES OVER COMPLETE DISCRETE VALUATION DOMAINS WITH ALMOST TRIVIAL DUAL*
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *