Skip to main content
×
×
Home

ON ∞-COMPLEX SYMMETRIC OPERATORS

  • MUNEO CHŌ (a1), EUNGIL KO (a2) and JI EUN LEE (a3)
Abstract

In this paper, we study spectral properties and local spectral properties of ∞-complex symmetric operators T. In particular, we prove that if T is an ∞-complex symmetric operator, then T has the decomposition property (δ) if and only if T is decomposable. Moreover, we show that if T and S are ∞-complex symmetric operators, then so is TS.

Copyright
References
Hide All
1. Chō, M., Lee, J. and Motoyoshi, H., On [m, C]-isometric operators, to appear in Filomat.
2. Chō, M., Ko, E. and Lee, J., On m-complex symmetric operators, Mediterranean J. Math. 13 (2016) 20252038.
3. Colojoara, I. and Foias, C., Theory of generalized spectral operators (Gordon and Breach, New York, 1968).
4. Duggal, B., Tensor product of n-isometries, Linear Algebra Appl. 437 (2012), 307318.
5. Garcia, S. R., Aluthge transforms of complex symmetric operators and applications, Int. Eq. Op. Th. 60 (2008), 357367.
6. Garcia, S. R. and Putinar, M., Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), 12851315.
7. Garcia, S. R. and Putinar, M., Complex symmetric operators and applications II, Trans. Amer. Math. Soc. 359 (2007), 39133931.
8. Garcia, S. R. and Wogen, W. R., Some new classes of complex symmetric operators, Trans. Amer. Math. Soc. 362 (2010), 60656077.
9. Helton, J. W., Operators with a representation as multiplication by x on a Sobolev space, in Hilbert Space Operators, Colloquia Math. Soc. (Janos, B., Editor) vol. 5 (Tihany, Hungary, 1970), 279287.
10. Jung, S., Ko, E., Lee, M. and Lee, J., On local spectral properties of complex symmetric operators, J. Math. Anal. Appl. 379 (2011), 325333.
11. Jung, S., Ko, E. and Lee, J., On complex symmetric operator matrices, J. Math. Anal. Appl. 406 (2013), 373385.
12. Laursen, K. and Neumann, M., An introduction to local spectral theory (Clarendon Press, Oxford, 2000).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Glasgow Mathematical Journal
  • ISSN: 0017-0895
  • EISSN: 1469-509X
  • URL: /core/journals/glasgow-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 84 *
Loading metrics...

Abstract views

Total abstract views: 315 *
Loading metrics...

* Views captured on Cambridge Core between 23rd February 2017 - 17th August 2018. This data will be updated every 24 hours.