Skip to main content Accessibility help
×
Home

Demonstration of laser pulse amplification by stimulated Brillouin scattering

  • E. Guillaume (a1) (a2), K. Humphrey (a3), H. Nakamura (a4), R. M. G. M. Trines (a2), R. Heathcote (a2), M. Galimberti (a2), Y. Amano (a5), D. Doria (a6), G. Hicks (a4), E. Higson (a7), S. Kar (a6), G. Sarri (a6), M. Skramic (a8), J. Swain (a7), K. Tang (a7), J. Weston (a7), P. Zak (a7), E. P. Alves (a9), R. A. Fonseca (a9), F. Fiúza (a9), H. Habara (a5), K. A. Tanaka (a5), R. Bingham (a2) (a3), M. Borghesi (a6), Z. Najmudin (a4), L. O. Silva (a9) and P. A. Norreys (a2) (a7)...

Abstract

The energy transfer by stimulated Brillouin backscatter from a long pump pulse (15 ps) to a short seed pulse (1 ps) has been investigated in a proof-of-principle demonstration experiment. The two pulses were both amplified in different beamlines of a Nd:glass laser system, had a central wavelength of 1054 nm and a spectral bandwidth of 2 nm, and crossed each other in an underdense plasma in a counter-propagating geometry, off-set by $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}10^\circ $ . It is shown that the energy transfer and the wavelength of the generated Brillouin peak depend on the plasma density, the intensity of the laser pulses, and the competition between two-plasmon decay and stimulated Raman scatter instabilities. The highest obtained energy transfer from pump to probe pulse is 2.5%, at a plasma density of $0.17 n_{cr}$ , and this energy transfer increases significantly with plasma density. Therefore, our results suggest that much higher efficiencies can be obtained when higher densities (above $0.25 n_{cr}$ ) are used.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Demonstration of laser pulse amplification by stimulated Brillouin scattering
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Demonstration of laser pulse amplification by stimulated Brillouin scattering
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Demonstration of laser pulse amplification by stimulated Brillouin scattering
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: P. A. Norreys, Clarendon Laboratory, University of Oxford (& STFC Rutherford Appleton Laboratory), Parks Road, Oxford OX1 3PU, UK.

References

Hide All
1.Fisch, N. J. and Malkin, V. M. Phys. Plasmas 10, 2056 (2003).
2.Ren, J. Li, S. Morozov, A. Suckewer, S. Yampolsky, N. A. Malkin, V. M. and Fisch, N. J. Phys. Plasmas 15, 056702 (2008).
3.Trines, R. M. G. M. Fiúza, F. Bingham, R. Fonseca, R. A. Silva, L. O. Cairns, R. A. and Norreys, P. A. Nature Phys. 7, 87 (2010).
4.Trines, R. M. G. M. Fiúza, F. Bingham, R. Fonseca, R. A. Silva, L. O. Cairns, R. A. and Norreys, P. A. Phys. Rev. Lett. 107, 105002 (2011).
5.Fonseca, R. A. Silva, L. O. Tsung, F. S. Decyk, V. K. Lu, W. Ren, C. Mori, W. B. Deng, S. Lee, S. Katsouleas, T. and Adam, J. C. Lect. Notes Comput. Sci. 2331, 342 (2002).
6.Lancia, L. Marquès, J.-R. Nakatsutsumi, M. Riconda, C. Weber, S. Hüller, S. Manc̈ić, A. Antici, P. Tikhonchuk, V. T. Héron, A. Audebert, P. and Fuchs, J. Phys. Rev. Lett. 104, 025001 (2010).
7.Forslund, D. W. Kindel, J. M. and Lindman, E. L. Phys. Fluids 18, 1002 (1975).
8.Kruer, W. L. The Physics of Laser Plasma Interactions (Westview Press, 2003).
9.Andreev, A. A. Riconda, C. Tikhonchuk, V. T. and Weber, S. Phys. Plasmas 13, 053110 (2006).
10.Michel, P. Divol, L. Williams, E. A. Thomas, C. A. Callahan, D. A. Weber, S. Haan, S. W. Salmonson, J. D. Meezan, N. B. Landen, O. L. Dixit, S. Hinkel, D. E. Edwards, M. J. MacGowan, B. J. Lindl, J. D. Glenzer, S. H. and Suter, L. J. Phys. Plasmas 16, 042702 (2009).
11.Michel, P. Glenzer, S. H. Divol, L. Bradley, D. K. Callahan, D. Dixit, S. Glenn, S. Hinkel, D. Kirkwood, R. K. Kline, J. L. Kruer, W. L. Kyrala, G. A. Le Pape, S. Meezan, N. B. Town, R. Widmann, K. Williams, E. A. MacGowan, B. J. Lindl, J. and Suter, L. J. Phys. Plasmas 17, 056305 (2010).
12.Danson, C. N. Brummitt, P. A. Clarke, R. J. Collier, J. L. Fell, B. Frackiewicz, A. J. Hancock, S. Hawkes, S. Hernandez-Gomez, C. Holligan, P. Hutchinson, M. H. R. Kidd, A. Lester, W. J. Musgrave, I. O. Neely, D. Neville, D. R. Norreys, P. A. Pepler, D. A. Reason, C. J. Shaikh, W. Winstone, T. B. Wyatt, R. W. W. and Wyborn, B. E. Nucl. Fusion 44, S239 (2004).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Demonstration of laser pulse amplification by stimulated Brillouin scattering

  • E. Guillaume (a1) (a2), K. Humphrey (a3), H. Nakamura (a4), R. M. G. M. Trines (a2), R. Heathcote (a2), M. Galimberti (a2), Y. Amano (a5), D. Doria (a6), G. Hicks (a4), E. Higson (a7), S. Kar (a6), G. Sarri (a6), M. Skramic (a8), J. Swain (a7), K. Tang (a7), J. Weston (a7), P. Zak (a7), E. P. Alves (a9), R. A. Fonseca (a9), F. Fiúza (a9), H. Habara (a5), K. A. Tanaka (a5), R. Bingham (a2) (a3), M. Borghesi (a6), Z. Najmudin (a4), L. O. Silva (a9) and P. A. Norreys (a2) (a7)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed