Skip to main content Accesibility Help
×
×
Home

Inertial confinement fusion and prospects for power production

  • C.B. Edwards (a1) (a2) and C.N. Danson (a2)
Abstract

As our understanding of the environmental impact of fossil fuel based energy production increases, it is becoming clear that the world needs a new energy solution to meet the challenges of the future. A transformation is required in the energy market to meet the need for low carbon, sustainable, affordable generation matched with security of supply. In the short term, an increasing contribution from renewable sources may provide a solution in some locations. In the longer term, low carbon, sustainable solutions must be developed to meet base load energy demand, if the world is to avoid an ever increasing energy gap and the attendant political instabilities. Laser-driven inertial fusion energy (IFE) may offer such a solution.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Inertial confinement fusion and prospects for power production
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Inertial confinement fusion and prospects for power production
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Inertial confinement fusion and prospects for power production
      Available formats
      ×
Copyright
The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence .
Corresponding author
Correspondence to: C.N. Danson, AWE, Aldermaston, Reading, RG7 4PR, UK. Email: colin.danson@awe.co.uk
References
Hide All
1. Dunne, M. Alexander, N. Amiranoff, F. Aguer, P. Atzeni, S. Azechi, H. Bagnoud, V. Balcou, P. Badziak, J. Batani, D. Bellei, C. Besnard, D. Bingham, R. Breil, J. Borghesi, M. Borneis, S. Caruso, A. Chanteloup, J. C. Clarke, R. J. Collier, J. L. Davies, J. R. Dufour, J.-P. Estraillier, P. Evans, R. G. Fajardo, M. Fedosejevs, R. Figueria, G. Fils, J. Feugeas, J. L. Galimberti, M. Gauthier, J.-C. Giulietti, A. Gizzi, L. A. Goodin, D. Gregori, G. Gus’kov, S. Hallo, L. Hernandez-Gomez, C. Hoffman, D. Honrubia, J. Jacquemot, S. Key, M. Kilkenny, J. Kingham, R. Koenig, M. Kovacs, F. Krushelnic, K. Labaune, C. Lancaster, K. Leblanc, C. Maire, P. H. Marklund, M. Martin, W. McEvoy, A. McKenna, P. Mendonça, J. T. Meyer-ter-Vehn, J. Mima, K. Mourou, G. Moustaizis, S. Najmudin, Z. Nickles, P. Neely, D. Norreys, P. Olazabal, M. Offenberger, A. Papadogianis, N. Perin, J.-P. Perlado, J. M. Ramirez, J. Ramis, R. Rhee, Y. Ribeyre, X. Robinson, A. Rohlena, K. Rose, S. J. Roth, M. Rouyer, C. Rulliere, C. Rus, B. Sandner, W. Schiavi, A. Schurtz, G. Sergeev, A. Sherlock, M. Silva, L. Smith, R. A. Sorasio, G. Strangio, C. Takabe, H. Tatarakis, M. Tikhonchuk, V. Tolley, M. Vaselli, M. Velarde, P. Winstone, T. Witte, K. Wolowski, J. Woolsey, N. Wyborn, B. Zepf, M. and Zhang, J. HiPER: The European High Power Laser Energy Research Facility, Technical Background and Conceptual Design Report 2007; RAL-TR-2007-008 (2007).
2. Orth, C. D. Nucl. Fusion 42, 354 (2002).
3. Lindl, D. Amendt, P. Berger, R. L. Glendinning, S. G. Glenzer, S. H. Haan, S. W. Kauffman, R. L. Landen, O. L. and Suter, L. J. Phys. Plasmas 11, 339 (2004).
4. Glenzer, S. H. MacGowan, B. J. Michel, P. Meezan, N. B. Suter, L. J. Dixit, S. N. Kline, J. L. Kyrala, G. A. Bradley, D. K. Callahan, D. A. Dewald, E. L. Divol, L. Dzenitis, E. Edwards, M. J. Hamza, A. V. Haynam, C. A. Hinkel, D. E. Kalantar, D. H. Kilkenny, J. D. Landen, O. L. Lindl, J. D. LePape, S. Moody, J. D. Nikroo, A. Parham, T. Schneider, M. B. Town, R. P. J. Wegner, P. Widmann, K. Whitman, P. Young, B. K. F. Van Wonterghem, B. Atherton, L. J. and Moses, E. I. Science 327, 1228 (2010).
5. Atzeni, S. and Meyer-ter-Vehn, J. The Physics of Inertial Fusion (Oxford University Press, 2004).
6. Miller, G. H. Moses, E. I. and West, C. R. Opt. Eng. 43, 2841 (2004).
7. Moses, E. I. Nucl. Fusion 49, 104022 (2009).
8. Lindl, J. Landen, O Edwards, J. and Moses, E. Phys. Plasmas 21, 020501 (2014).
9. Ebrardt, J. and Chaput, J. M. J. Phys.: Conf. Ser. 244, 032017 (2010).
10. Shiraga, H. Fujioka, S. Nakai, M. Watari, T. Nakamura, H. Arikawa, Y. Hosoda, H. Nagai, T. Koga, M. Kikuchi, H. Ishii, Y. Sogo, T. Shigemori, K. Nishimura, H. Zhang, Z. Tanabe, M. Ohira, S. Fujii, Y. Namimoto, T. Sakawa, Y. Maegawa, O. Ozaki, T. Tanaka, K. A. Habara, H. Iwawaki, T. Shimada, K. Nagatomo, H. Johzaki, T. Sunahara, A. Murakami, M. Sakagami, H. Taguchi, T. Norimatsu, T. Homma, H. Fujimoto, Y. Iwamoto, A. Miyanaga, N. Kawanaka, J. Jitsuno, T. Nakata, Y. Tsubakimoto, K. Sueda, K. Morio, N. Matsuo, S. Kawasaki, T. Sawai, K. Tsuji, K. Murakami, H. Kanabe, T. Kondo, K. Kodama, R. Sarukura, N. Shimizu, T. Mima, K. and Azechi, H. High Energy Density Phys. 8, 227 (2012).
11. Azechi, H. Mima, K. Shiraga, S. Fujioka, S. Nagatomo, H. Johzaki, T. Jitsuno, T. Key, M. Kodama, R. Koga, M. Kondo, K. Kawanaka, J. Miyanaga, N. Murakami, M. Nagai, K. Nakai, M. Nakamura, H. Nakamura, T. Nakazato, T. Nakao, Y. Nishihara, K. Nishimura, H. Norimatsu, T. Norreys, P. Ozaki, T. Pasley, J. Sakagami, H. Sakawa, Y. Sarukura, N. Shigemori, K. Shimizu, T. Sunahara, A. Taguchi, T. Tanaka, K. Tsubakimoto, K. Fujimoto, Y. Homma, H. and Iwamoto, A. Nucl. Fusion 53, 104021 (2013).
12. Danson, C. N. Brummitt, P. A. Clarke, R. J. Collier, J. L. Fell, B. Frackiewicz, A. J. Hancock, S. Hawkes, S. Hernandez-Gomez, C. Holligan, P. Hutchinson, M. H. R. Kidd, A. Lester, W. J. Musgrave, I. O. Neely, D. Neville, D. R. Norreys, P. A. Pepler, D. A. Reason, C. J. Shaikh, W. Winstone, T. B. Wyatt, R. W. W. and Wyborn, B. E. Nucl. Fusion 44, S239 (2004).
13. Hopps, N. Danson, C. Duffield, S. Egan, D. Elsmere, S. Girling, M. Harvey, E. Hillier, D. Norman, M. Parker, S. Treadwell, P. Winter, D. and Bett, T. Appl. Opt. 52, 3597 (2013).
14. Hoarty, D. J. Allan, P. James, S. F. Brown, C. R. D. Hobbs, L. M. R. Hill, M. P. Harris, J. W. O. Morton, J. Brookes, M. G. Shepherd, R. Dunn, J. Chen, H. Von Marley, E. Beiersdorfer, P. Chung, H. K. Lee, R. W. Brown, G. and Emig, J. High Energy Density Phys. 9, 661 (2013).
15. Hoarty, D. J. Allan, P. James, S. F. Brown, C. R. D. Hobbs, L. M. R. Hill, M. P. Harris, J. W. O. Morton, J. Brookes, M. G. Shepherd, R. Dunn, J. Chen, H. Von Marley, E. Beiersdorfer, P. Chung, H. K. Lee, R. W. Brown, G. and Emig, J. Phys. Rev. Lett. 110, 265003 (2013).
16. Hien, J. Silva, L. O. Korn, G. Gizzi, L. A. and Edwards, C. B. (Eds) SPIE Volume 8080, Proceedings of ‘Diode-Pumped High Energy and High Power Lasers; ELI: Ultra-relativistic Laser–Matter Interactions and Petawatt Photonics; and HiPER: the European Pathway to Laser Energy’, Prague, Czech Republic, April 18, 2011.
18. Dunne, M. Fusion Sci. Technol. 60, 19 (2011).
23. Tunnermann, A. Zellmer, H. Schome, W. Giesen, A. and Contag, K. Top. Appl. Phys. 78, 369 (2000).
24. Banerjee, S. Ertel, K. Mason, P. D. Phillips, P. J. Siebold, M. Loeser, M. Hernandez-Gomez, C. and Collier, J. L. Opt. Lett. 37, 2175 (2012).
25. Chanteloup, J.-C. Lucianetti, A. Albach, D. and Gonçalvès-Novo, T. Plasma Fusion Res. 8, 3404043 (2013).
26. Hornung, M. Liebetrau, H. Seidel, A. Keppler, S. Kessler, A. Korner, J. Hellwing, M. Schorcht, F. Klopfel, D. Arunachalam, A. K. Becker, G. A. Savert, A. Polz, J. Hein, J. and Kaluza, C. High Power Laser Sci. Eng. 2, e20 (2014).
27. Divoky, M. Smrz, M. Chyla, M. Sikocinski, P. Severova, P. Novak, O. Huynh, J. Nagisetty, S. S. Miura, T. Pilar, J. Slezak, O. Sawicka, M. Jambunathan, V. Vanda, J. Endo, A. Lucianetti, A. Rostohar, D. Mason, P. D. Phillips, P. J. Ertel, K. Banerjee, S. Hernandez-Gomez, C. Collier, J. L. and Mocek, T. High Power Laser Sci. Eng. 2, e14 (2014).
28. Lucianetti, A. Sawicka, M. Slezak, O. Divoky, M. Pilar, J. Jambunathan, V. Bonora, S. Antipenkov, R. and Mocek, T. High Power Laser Sci. Eng. 2, e13 (2014).
29. Tolley, M. and Spindloe, C. in Laser–Plasma Interactions and Applications, McKenna, P., Neely, D., Bingham, R. and Jaroszynski, D. A., eds. Ch. 17, (Springer, 2013), p. 431, ISBN 978-3-319-00037-4.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

High Power Laser Science and Engineering
  • ISSN: 2095-4719
  • EISSN: 2052-3289
  • URL: /core/journals/high-power-laser-science-and-engineering
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed