Skip to main content Accessibility help
×
Home

Maser radiation from collisionless shocks: application to astrophysical jets

  • D. C. Speirs (a1), K. Ronald (a1), A. D. R. Phelps (a1), M. E. Koepke (a2), R. A. Cairns (a3), A. Rigby (a4), F. Cruz (a5), R. M. G. M. Trines (a6), R. Bamford (a6), B. J. Kellett (a6), B. Albertazzi (a7), J. E. Cross (a8), F. Fraschetti (a9), P. Graham (a10), P. M. Kozlowski (a8), Y. Kuramitsu (a11), F. Miniati (a8), T. Morita (a12), M. Oliver (a8), B. Reville (a13), Y. Sakawa (a12), S. Sarkar (a8), C. Spindloe (a6), M. Koenig (a7), L. O. Silva (a5), D. Q. Lamb (a14), P. Tzeferacos (a8) (a14), S. Lebedev (a15), G. Gregori (a8) (a14) and R. Bingham (a1) (a6)...

Abstract

This paper describes a model of electron energization and cyclotron-maser emission applicable to astrophysical magnetized collisionless shocks. It is motivated by the work of Begelman, Ergun and Rees [Astrophys. J. 625, 51 (2005)] who argued that the cyclotron-maser instability occurs in localized magnetized collisionless shocks such as those expected in blazar jets. We report on recent research carried out to investigate electron acceleration at collisionless shocks and maser radiation associated with the accelerated electrons. We describe how electrons accelerated by lower-hybrid waves at collisionless shocks generate cyclotron-maser radiation when the accelerated electrons move into regions of stronger magnetic fields. The electrons are accelerated along the magnetic field and magnetically compressed leading to the formation of an electron velocity distribution having a horseshoe shape due to conservation of the electron magnetic moment. Under certain conditions the horseshoe electron velocity distribution function is unstable to the cyclotron-maser instability [Bingham and Cairns, Phys. Plasmas 7, 3089 (2000); Melrose, Rev. Mod. Plasma Phys. 1, 5 (2017)].

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Maser radiation from collisionless shocks: application to astrophysical jets
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Maser radiation from collisionless shocks: application to astrophysical jets
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Maser radiation from collisionless shocks: application to astrophysical jets
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: D. C. Speirs, Department of Physics, University of Strathclyde, John Anderson Building, Glasgow, G4 0NG, UK. Email: david.c.speirs@strath.ac.uk

References

Hide All
1. Meier, D. L. Koide, S. and Uchida, Y. Science 291, 84 (2001).
2. Nemmen, R. S. Georganopoulos, M. Guiriec, S. Meyer, E. T. Gehrels, N. and Sambruna, R. M. Science 338, 1445 (2012).
3. Begelman, M. C. Ergun, R. E. and Rees, M. J. Astrophys. J. 625, 51 (2005).
4. Bingham, R. Kellett, B. J. Cairns, R. A. Tonge, J. and Mendonca, J. T. Astrophys. J. 595, 279 (2003).
5. Treumann, R. A. Astron. Astrophys. Rev. 13, 229 (2006).
6. O’Sullivan, S. P. and Gabuzda, D. C. Mon. Not. R. Astron. Soc. 400, 26 (2009).
7. Gurnett, D. A. J. Geophys. Res. 79, 4227 (1974).
8. Katsouleas, T. and Dawson, J. M. Phys. Rev. Lett. 51, 392 (1983).
9. McBride, J. B. Ott, E. Boris, J. P. and Orens, J. H. Phys. Fluids 15, 2367 (1972).
10. Yamada, M. and Owens, D. K. Phys. Rev. Lett. 38, 1529 (1977).
11. McClements, K. G. Bingham, R. Su, J. J. Dawson, J. M. and Spicer, D. S. Astrophys. J. 409, 465 (1993).
12. Laming, M. J. Astrophys. J. 563, 828 (2001).
13. Vink, J. and Laming, M. J. Astrophys. J. 584, 758 (2003).
14. Shapiro, V. D. and Shevchenko, V. I. Sov. Sci. Rev. E 6, 425 (1988).
15. Bingham, R. Dawson, J. M. Shapiro, V. D. Mendis, D. A. and Kellett, B. J. Science 275, 49 (1997).
16. Bingham, R. Kellett, B. J. Dawson, J. M. Shapiro, V. D. and Mendis, D. A. Astrophys. J. 127, 233 (2000).
17. Bingham, R. Kellett, B. J. Bryans, P. Summers, H. P. Torney, M. Shapiro, V. D. Spicer, D. S. and O’Brien, M. Astrophys. J. 601, 896 (2004).
18. Bingham, R. Shapiro, V. D. Tsytovich, V. N. de Angelis, U. Gilman, M. and Shevchenko, V. I. Phys. Fluids B 3, 1728 (1991).
19. Bamford, R. A. Kellett, B. Bradford, W. J. Norberg, C. Thornton, A. Gibson, K. J. Crawford, I. A. Silva, L. Gargat é, L. and Bingham, R. Phys. Rev. Lett. 109, 081101 (2012).
20. Bamford, R. A. Alves, E. P. Cruz, F. Kellett, B. J. Fonseca, R. A. O Silva, L. Trines, R. M. G. M. Halekas, J. S. Kramer, G. and Harnett, E. Astrophys. J. 830, 146 (2016).
21. Bingham, R. Bamford, R. Kellett, B. J. and Shapiro, V. D. J. Plasma Phys. 76, 915 (2010).
22. Rigby, A. Cruz, F. Albertazzi, B. Bamford, R. Bell, A. R. Cross, J. E. Fraschetti, F. Graham, P. Hara, Y. Kozlowski, P. M. Kuramitsu, Y. Lamb, D. Q. Lebedev, S. Marques, J. R. Miniati, F. Morita, T. Oliver, M. Reville, B. Sakawa, Y. Sarkar, S. Spindloe, C. Trines, R. Tzeferacos, P. Silva, L. O. Bingham, R. Koenig, M. and Gregori, G. Nat. Phys. 14, 475 (2018).
23. Cruz, F. Alves, E. P. Bamford, R. A. Bingham, R. Fonseca, R. A. and Silva, L. O. Phys. Plasmas 24, 022901 (2017).
24. Speirs, D. C. Bingham, R. Cairns, R. A. Vorgul, I. Kellett, B. J. Phelps, A. D. R. and Ronald, K. Phys. Rev. Lett. 113, 155002 (2014).
25. Drake, P. High-Energy-Density Physics: Foundation of Inertial Fusion and Experimental Astrophysics (Springer International Publishing, 2006).
26. Remington, B. A. Drake, R. P. and Ryutov, D. D. Rev. Mod Phys. 78, 755 (2006).
27. Koepke, M. E. Rev. Geophys. 46, RG3001 (2008).
28. Lebedev, S. Suttle, L. Swadling, G. F. Bennett, M. Bland, S. N. Burdiak, G. C. Burgess, D. Chittenden, J. P. Ciardi, A. Clemens, A. de Grouchy, P. Hall, G. N. Hare, J. D. Kalmoni, N. Niasse, N. Patankar, S. Sheng, L. Smith, R. A. Suzuki-Vidal, F. Yuan, J. Frank, A. Blackman, E. G. and Drake, R. P. Phys. Plasmas 21, 056305 (2014).
29. Gregori, G. Reville, B. and Miniati, F. Phys. Rep. 601, 1 (2015).
30. Ryutov, D. D. Remington, B. A. Robey, H. F. and Drake, R. P. Phys. Plasmas 8, 1804 (2001).
31. Cesario, R. Amicucci, L. Castaldo, C. Kempenaars, M. Jachmich, S. Mailloux, J. Tudisco, O. Galli, A. and Krivska, A. and JET-EFDA contributors, Plasma Phys. Control. Fusion 53, 085011 (2011).
32. Shapiro, V. D. Bingham, R. Dawson, J. M. Dobe, Z. Kellett, B. J. and Mendis, D. A. J. Geophys. Res. 104, 2537 (1999).
33. Omelchenko, Y. A. Yu. Sagdeev, R. Z. Shapiro, V. D. and Shevchenko, V. I. Sov. J. Plasma Phys. 15, 739 (1989).
34. Eilek, J. A. and Weatherall, J. C. in Diffuse Thermal and Relativistic Plasma in Galaxy Clusters, Bohringer, H., Feretti, L. and Schuecker, P.  (eds) (Max-Planck-Institut für Extraterrestrische Physik, Garching, Germany, 1999), p. 249.
35. Eilek, J. A. Phys. Plasmas 10, 1539 (2003).
36. Bingham, R. and Cairns, R. A. Phys. Plasmas 7, 3089 (2000).
37. Ronald, K. Speirs, D. C. McConville, S. L. Phelps, A. D. R. Robertson, C. W. Whyte, C. G. He, W. Gillespie, K. M. Cross, A. W. and Bingham, R. Phys. Plasmas 15, 056503 (2008).
38. Speirs, D. C. McConville, S. L. Gillespie, K. M. Ronald, K. Phelps, A. D. R. Cross, A. W. Bingham, R. Robertson, C. W. Whyte, C. G. and Vorgul, I. Plasma Phys. Control. Fusion 50, 074011 (2008).
39. McConville, S. L. Speirs, D. C. Ronald, K. Phelps, A. D. R. Cross, A. W. Bingham, R. Robertson, C. W. Whyte, C. G. He, W. Gillespie, K. M. Vorgul, I. Cairns, R. A. and Kellett, B. J. Plasma Phys. Control. Fusion 50, 074010 (2008).
40. Melrose, D. B. Rev. Mod. Plasma Phys. 1, 5 (2017).
41. Stix, T. H. Waves in Plasma (AIP, New York, 1992).
42. Krall, N. and Trivelpiece, A. W. Principles of Plasma Physics (McGraw Hill, New York, 1973).
43. Scopatz, A. Fatenejad, M. Flocke, N. Gregori, G. Koenig, M. Lamb, D. Q. Lee, D. Meinecke, J. Ravasio, A. Tzeferacos, P. Weide, K. and Yurchak, R. High Energy Density Phys. 9, 75 (2013).
44. Meinecke, J. Doyle, H. W. Miniati, F. Bell, A. R. Bingham, R. Crowston, R. Drake, R. P. Fatenejad, M. Koenig, M. Kuramitsu, Y. Kuranz, C. C. Lamb, D. Q. Lee, D. MacDonald, M. J. Murphy, C. D. Park, H.-S. Pelka, A. Ravasio, A. Sakawa, Y. Schekochihin, A. A. Scopatz, A. Tzeferacos, P. Wan, W. C. Woolsey, N. C. Yurchak, R. Reville, B. and Gregori, G. Nat. Phys. 10, 520 (2014).
45. Speirs, D. C. Ronald, K. McConville, S. L. Gillespie, K. M. Phelps, A. D. R. Cross, A. W. Bingham, R. Robertson, C. W. Whyte, C. G. He, W. Vorgul, I. Cairns, R. A. and Kellett, B. J. Phys. Plasmas 17, 056501 (2010).
46. Nieter, C. and Cary, J. R. J. Comput. Phys. 196, 448 (2004).
47. Bingham, R. Speirs, D. C. Kellett, B. J. Vorgul, I. McConville, S. L. Cairns, R. A. Cross, A. W. Phelps, A. D. R. and Ronald, K. Space Sci. Rev. 178, 695 (2013).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed