Skip to main content Accessibility help
×
×
Home

Maximizing magnetic field generation in high power laser–solid interactions

  • L. G. Huang (a1), H. Takabe (a1) (a2) and T. E. Cowan (a1) (a3)
Abstract

In order to understand the transport of fast electrons within solid density targets driven by an optical high power laser, we have numerically investigated the dynamics and structure of strong self-generated magnetic fields in such experiments. Here we present a systematic study of the bulk magnetic field generation due to the ponderomotive current, Weibel-like instability and resistivity gradient between two solid layers. Using particle-in-cell simulations, we observe the effect of varying the laser and target parameters, including laser intensity, focal size, incident angle, preplasma scale length, target thickness and material and experimental geometry. The simulation results suggest that the strongest magnetic field is generated with laser incident angles and preplasma scale lengths that maximize laser absorption efficiency. The recent commissioning of experimental platforms equipped with both optical high power laser and X-ray free electron laser (XFEL), such as European XFEL-HED, LCLS-MEC and SACLA beamlines, provides unprecedented opportunities to probe the self-generated bulk magnetic field by X-ray polarimetry via Faraday rotation with simultaneous high spatial and temporal resolution. We expect that this systematic numerical investigation will pave the way to design and optimize near future experimental setups to probe the magnetic fields in such experimental platforms.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Maximizing magnetic field generation in high power laser–solid interactions
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Maximizing magnetic field generation in high power laser–solid interactions
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Maximizing magnetic field generation in high power laser–solid interactions
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Correspondence to:  L. G. Huang, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01238 Dresden, Germany. Email: lingen.huang@hzdr.de
References
Hide All
1. Huang, L. G. Kluge, T. and Cowan, T. E. Phys. Plasmas 23, 063112 (2016).
2. Davis, J. and Petrov, G. M. J. Phys. B: At. Mol. Opt. Phys. 47, 095402 (2014).
3. Mishra, R. Leblanc, P. Sentoku, Y. Wei, M. S. and Beg, F. N. Phys. Plasmas 20, 072704 (2013).
4. Kemp, A. J. Pfund, R. E. W. and Meyer-ter-Vehn, J. Phys. Plasmas 11, 5648 (2004).
5. Wilks, S. C. Kruer, W. L. Tabak, M. and Langdon, A. B. Phys. Rev. Lett. 69, 1383 (1992).
6. Kluge, T. Cowan, T. Debus, A. Schramm, U. Zeil, K. and Bussmann, M. Phys. Rev. Lett. 107, 205003 (2011).
7. Chen, H. Wilks, S. C. Kruer, W. L. Patel, P. K. and Shepherd, R. Phys. Plasmas 16, 020705 (2009).
8. Ma, T. Sawada, H. Patel, P. K. Chen, C. D. Divol, L. Higginson, D. P. Kemp, A. J. Key, M. H. Larson, D. J. Le Pape, S. Link, A. MacPhee, A. G. McLean, H. S. Ping, Y. Stephens, R. B. Wilks, S. C. and Beg, F. N. Phys. Rev. Lett. 108, 115004 (2012).
9. Huang, L. G. Schlenvoigt, H. P. Takabe, H. and Cowan, T. E. Phys. Plasmas 24, 103115 (2017).
10. Wu, D. He, X. T. Yu, W. and Fritzsche, S. Phys. Rev. E 95, 023207 (2017).
11. Davies, J. R. Phys. Rev. E 68, 056404 (2003).
12. Albertazzi, B. Chen, S. N. Antici, P. Böker, J. Borghesi, M. Breil, J. Dervieux, V. Feugeas, J. L. Lancia, L. Nakatsutsumi, M. Nicolaï, P. Romagnagni, L. Shepherd, R. Sentoku, Y. Starodubtsev, M. Swantusch, M. Tikhonchuk, V. T. Willi, O. Humières, E. Pépin, H. and Fuchs, J. Phys. Plasmas 22, 123108 (2015).
13. Haines, M. G. Phys. Rev. Lett. 78, 254 (1997).
14. Sentoku, Y. Mima, K. Kojima, S.-i. and Ruhl, H. Phys. Plasmas 7, 689 (2000).
15. Bret, A. and Gremillet, L. Plasma Phys. Control. Fusion 48, B405 (2006).
16. Davies, J. R. Green, J. S. and Norreys, P. A. Plasma Phys. Control. Fusion 48, 1181 (2006).
17. Leblanc, P. and Sentoku, Y. Phys. Rev. E 89, 023109 (2014).
18. Borghesi, M. MacKinnon, A. J. Bell, A. R. Gaillard, R. and Willi, O. Phys. Rev. Lett. 81, 112 (1998).
19. Stamper, J. Science 281, 1469 (1998).
20. Buck, A. Nicolai, M. Schmid, K. Sears, C. M. S. Savert, A. Mikhailova, J. M. Krausz, F. Kaluza, M. C. and Veisz, L. Nat. Phys. 7, 543 (2011).
21. Santos, M. B.-G. J. J. Giuffrida, L. Forestier-Colleoni, P. Fujioka, S. Zhang, Z. Korneev, Ph. Bouillaud, R. Dorard, S. Batani, D. Chevrot, M. Cross, J. Crowston, R. Dubois, J.-L. Gazave, J. Gregori, G. d’Humières, E. Hulin, S. Ishihara, K. Kojima, S. Loyez, E. Marquès, J.-R. Morace, A. Nicolaï, Ph. Peyrusse, O. Poyé, A. Raffestin, D. Ribolzi, J. Roth, M. Schaumann, G. Serres, F. Tikhonchuk, V. T. Vacar, Ph. and Woolsey, N. New J. Phys. 17, 083051 (2015).
22. Moniruzzaman, S. Amit, D. L. Kamalesh, J. Deep, S. Indranuj, D. and Kumar, G. R. Plasma Phys. Control. Fusion 59, 014007 (2017).
23. Li, C. K. Séguin, F. H. Frenje, J. A. Rygg, J. R. Petrasso, R. D. Town, R. P. J. Amendt, P. A. Hatchett, S. P. Landen, O. L. Mackinnon, A. J. Patel, P. K. Smalyuk, V. A. Sangster, T. C. and Knauer, J. P. Phys. Rev. Lett. 97, 135003 (2006).
24. Schumaker, W. Nakanii, N. McGuffey, C. Zulick, C. Chyvkov, V. Dollar, F. Habara, H. Kalintchenko, G. Maksimchuk, A. Tanaka, K. A. Thomas, A. G. R. Yanovsky, V. and Krushelnick, K. Phys. Rev. Lett. 110, 015003 (2013).
25. Marx, B. Schulze, K. S. Uschmann, I. Kämpfer, T. Lötzsch, R. Wehrhan, O. Wagner, W. Detlefs, C. Roth, T. Härtwig, J. Förster, E. Stöhlker, T. and Paulus, G. G. Phys. Rev. Lett. 110, 254801 (2013).
26. Marx, B. Uschmann, I. Höfer, S. Lötzsch, R. Wehrhan, O. Förster, E. Kaluza, M. Stöhlker, T. Gies, H. Detlefs, C. Roth, T. Härtwig, J. and Paulus, G. G. Opt. Commun. 284, 915 (2011).
27. Heinzl, T. Liesfeld, B. Amthor, K.-U. Schwoerer, H. Sauerbrey, R. and Wipf, A. Opt. Commun. 267, 318 (2006).
28. Karbstein, F. Gies, H. Reuter, M. and Zepf, M. Phys. Rev. D 92, 071301 (2015).
29. King, B. and Heinzl, T. High Power Laser Sci. Eng. 4, e5 (2016).
30. Schlenvoigt, H.-P. Heinzl, T. Schramm, U. Cowan, T. E. and Sauerbrey, R. Phys. Scr. 91, 023010 (2016).
31. Shen, B. Bu, Z. Xu, J. Xu, T. Ji, L. Li, R. and Xu, Z. Plasma Phys. Control. Fusion 60, 044002 (2018).
32. Heeg, K. P. Haber, J. Schumacher, D. Bocklage, L. Wille, H.-C. Schulze, K. S. Loetzsch, R. Uschmann, I. Paulus, G. G. Rüffer, R. Röhlsberger, R. and Evers, J. Phys. Rev. Lett. 114, 203601 (2015).
33. Heeg, K. P. Wille, H.-C. Schlage, K. Guryeva, T. Schumacher, D. Uschmann, I. Schulze, K. S. Marx, B. Kämpfer, T. Paulus, G. G. Röhlsberger, R. and Evers, J. Phys. Rev. Lett. 111, 073601 (2013).
34. Sentoku, Y. and Kemp, A. J. J. Comput. Phys. 227, 6846 (2008).
35. Sentoku, Y. Paraschiv, I. Royle, R. Mancini, R. C. and Johzaki, T. Phys. Rev. E 90, 051102 (2014).
36. Royle, R. Sentoku, Y. Mancini, R. C. Paraschiv, I. and Johzaki, T. Phys. Rev. E 95, 063203 (2017).
37. Landau, L. D. and Lifshitz, E. M. Quantum Mechanics 3rd edn. (Pergamon, 1978).
38. More, R. M. Adv. Atom. Mol. Phys. 21, 305 (1985).
39. Braenzel, J. Andreev, A. A. Platonov, K. Klingsporn, M. Ehrentraut, L. Sandner, W. and Schnürer, M. Phys. Rev. Lett. 114, 124801 (2015).
40. Shen, X. F. Qiao, B. Zhang, H. Kar, S. Zhou, C. T. Chang, H. X. Borghesi, M. and He, X. T. Phys. Rev. Lett. 204802 (2017).
41. Mason, R. J. and Tabak, M. Phys. Rev. Lett. 80, 524 (1998).
42. Schoeffler, K. M. Loureiro, N. F. Fonseca, R. A. and Silva, L. O. Phys. Rev. Lett. 112, 175001 (2014).
43. Schoeffler, K. M. Loureiro, N. F. Fonseca, R. A. and Silva, L. O. Phys. Plasmas 23, 056304 (2016).
44. Gibbon, P. Short Pulse Laser Interactions with Matter: An Introduction (Imperial College Press, 2005).
45. Weibel, E. S. Phys. Rev. Lett. 2, 83 (1959).
46. Metzkes, J. Kluge, T. Zeil, K. Bussmann, M. Kraft, S. D. Cowan, T. E. and Schramm, U. New J. Phys. 16, 023008 (2014).
47. Petrov, G. M. Davis, J. and Petrova, T. Plasma Phys. Control. Fusion 51, 095005 (2009).
48. Brunel, F. Phys. Rev. Lett. 59, 52 (1987).
49. Gibbon, P. Andreev, A. A. and Platonov, K. Y. Plasma Phys. Control. Fusion 54, 045001 (2012).
50. Mackinnon, A. J. Sentoku, Y. Patel, P. K. Price, D. W. Hatchett, S. Key, M. H. Andersen, C. Snavely, R. and Freeman, R. R. Phys. Rev. Lett. 88, 215006 (2002).
51. Debayle, A. Gremillet, L. Honrubia, J. J. and d’Humières, E. Phys. Plasmas 20, 013109 (2013).
52. Ramakrishna, B. Kar, S. Robinson, A. P. L. Adams, D. J. Markey, K. Quinn, M. N. Yuan, X. H. McKenna, P. Lancaster, K. L. Green, J. S. Scott, R. H. H. Norreys, P. A. Schreiber, J. and Zepf, M. Phys. Rev. Lett. 105, 135001 (2010).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

High Power Laser Science and Engineering
  • ISSN: 2095-4719
  • EISSN: 2052-3289
  • URL: /core/journals/high-power-laser-science-and-engineering
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed