Skip to main content
×
×
Home

Measurements of the ablation-front trajectory and low-mode nonuniformity in direct-drive implosions using x-ray self-emission shadowgraphy

Abstract

Self-emission x-ray shadowgraphy provides a method to measure the ablation-front trajectory and low-mode nonuniformity of a target imploded by directly illuminating a fusion capsule with laser beams. The technique uses time-resolved images of soft x-rays ( ${>}1$  keV) emitted from the coronal plasma of the target imaged onto an x-ray framing camera to determine the position of the ablation front. Methods used to accurately measure the ablation-front radius ( ${\it\delta}R=\pm 1.15~{\rm\mu}\text{m}$ ), image-to-image timing ( ${\it\delta}({\rm\Delta}t)=\pm 2.5$  ps) and absolute timing ( ${\it\delta}t=\pm 10$  ps) are presented. Angular averaging of the images provides an average radius measurement of ${\it\delta}(R_{\text{av}})=\pm 0.15~{\rm\mu}\text{m}$ and an error in velocity of ${\it\delta}V/V=\pm 3\%$ . This technique was applied on the Omega Laser Facility [Boehly et al., Opt. Commun. 133, 495 (1997)] and the National Ignition Facility [Campbell and Hogan, Plasma Phys. Control. Fusion 41, B39 (1999)].

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Measurements of the ablation-front trajectory and low-mode nonuniformity in direct-drive implosions using x-ray self-emission shadowgraphy
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Measurements of the ablation-front trajectory and low-mode nonuniformity in direct-drive implosions using x-ray self-emission shadowgraphy
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Measurements of the ablation-front trajectory and low-mode nonuniformity in direct-drive implosions using x-ray self-emission shadowgraphy
      Available formats
      ×
Copyright
The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence .
Corresponding author
Correspondence to:  D.T. Michel, Laboratory for Laser Energetics, 250 E. River Road, Rochester, NY 14623, USA. Email: tmic@lle.rochester.edu
References
Hide All
1. Nuckolls, J. Wood, L. Thiessen, A. and Zimmerman, G. Nature 239, 139 (1972).
2. Herrmann, M. C. Tabak, M. and Lindl, J. D. Nucl. Fusion 41, 99 (2001).
3. MacFarlane, J. J. Golovkin, I. E. Wang, P. Woodruff, P. R. and Pereyra, N. A. High Energy Density Phys. 3, 181 (2007).
4. Michel, D. T. Sorce, C. Epstein, R. Whiting, N. Igumenshchev, I. V. Jungquist, R. and Froula, D. H. Rev. Sci. Instrum. 83, 10E530 (2012).
5. Michel, D. T. Goncharov, V. N. Igumenshchev, I. V. Epstein, R. and Froula, D. H. Phys. Rev. Lett. 111, 245005 (2013).
6. Froula, D. H. Igumenshchev, I. V. Michel, D. T. Edgell, D. H. Follett, R. Glebov, V. Yu. Goncharov, V. N. Kwiatkowski, J. Marshall, F. J. Radha, P. B. Seka, W. Sorce, C. Stagnitto, S. Stoeckl, C. and Sangster, T. C. Phys. Rev. Lett. 108, 125003 (2012).
7. Michel, D. T. Craxton, R. S. Davis, A. K. Epstein, R. Glebov, V. Yu. Goncharov, V. N. Hu, S. X. Igumenshchev, I. V. Meyerhofer, D. D. Radha, P. B. Sangster, T. C. Seka, W. Stoeckl, C. and Froula, D. H. Plasma Phys. Control. Fusion 57, 014023 (2015).
8. Hohenberger, M. Radha, P. B. Bates, J. W. Betti, R. Boehly, T. R. Bonino, M. J. Casey, D. T. Collins, T. J. B. Craxton, R. S. Delettrez, J. A. Edgell, D. H. Epstein, R. Fiksel, G. Fitzsimmons, P. Frenje, J. A. Froula, D. H. Goncharov, V. N. Harding, D. R. Kalantar, D. H. Karasik, M. Kessler, T. J. Kilkenny, J. D. Knauer, J. P. Kurz, C. Lafon, M. LaFortune, K. N. LePape, S. MacGowan, B. Mackinnon, A. J. MacPhee, A. Marozas, J. A. Marshall, F. J. McCrory, R. L. McKenty, P. W. Meeker, J. Meyerhofer, D. D. Michel, D. T. Myatt, J. F. Nagel, S. R. Nikroo, A. Obenschain, S. P. Petrasso, R. D. Regan, S. P. Rinderknecht, H. G. Rosenberg, M. Sangster, T. C. Schmitt, A. J. Seka, W. Shvydky, A. Skupsky, S. Solodov, A. A. Stoeckl, C. Wallace, R. J. Weaver, J. Widmeyer, C. Yaakobi, B. and Zuegel, J. D. Phys. Plasmas 22, 056308 (2015).
9. Boehly, T. R. Brown, D. L. Craxton, R. S. Keck, R. L. Knauer, J. P. Kelly, J. H. Kessler, T. J. Kumpan, S. A. Loucks, S. J. Letzring, S. A. Marshall, F. J. McCrory, R. L. Morse, S. F. B. Seka, W. Soures, J. M. and Verdon, C. P. Opt. Commun. 133, 495 (1997).
10. Campbell, E. M. and Hogan, W. J. Plasma Phys. Control. Fusion 41, B39 (1999).
11. Skupsky, S. Marozas, J. A. Craxton, R. S. Betti, R. Collins, T. J. B. Delettrez, J. A. Goncharov, V. N. McKenty, P. W. Radha, P. B. Boehly, T. R. Knauer, J. P. Marshall, F. J. Harding, D. R. Kilkenny, J. D. Meyerhofer, D. D. Sangster, T. C. and McCrory, R. L. Phys. Plasmas 11, 2763 (2004).
12. Bradley, D. K. Bell, P. M. Kilkenny, J. D. Hanks, R. Landen, O. Jaanimagi, P. A. McKenty, P. W. and Verdon, C. P. Rev. Sci. Instrum. 63, 4813 (1992).
13. Bradley, D. K. Bell, P. M. Landen, O. L. Kilkenny, J. D. and Oertel, J. Rev. Sci. Instrum. 66, 716 (1995).
14. See http://www.photonengr.com/ for information regarding the FRED program.
15. Smalyuk, V. A. Boehly, T. R. Bradley, D. K. Knauer, J. P. and Meyerhofer, D. D. Rev. Sci. Instrum. 70, 647 (1999).
16. Marshall, F. J. Delettrez, J. A. Epstein, R. Forties, R. Keck, R. L. Kelly, J. H. McKenty, P. W. Regan, S. P. and Waxer, L. J. Phys. Plasmas 11, 251 (2004).
17. Boehly, T. R. Smalyuk, V. A. Meyerhofer, D. D. Knauer, J. P. Bradley, D. K. Craxton, R. S. Guardalben, M. J. Skupsky, S. and Kessler, T. J. J. Appl. Phys. 85, 3444 (1999).
18. Skupsky, S. Short, R. W. Kessler, T. Craxton, R. S. Letzring, S. and Soures, J. M. J. Appl. Phys. 66, 3456 (1989).
19. Kessler, T. J. Lin, Y. Armstrong, J. J. and Velazquez, B. Proc. SPIE 1870, 95 (1993).
20. Goncharov, V. N. Sangster, T. C. Boehly, T. R. Hu, S. X. Igumenshchev, I. V. Marshall, F. J. McCrory, R. L. Meyerhofer, D. D. Radha, P. B. Seka, W. Skupsky, S. Stoeckl, C. Casey, D. T. Frenje, J. A. and Petrasso, R. D. Phys. Rev. Lett. 104, 165001 (2010).
21. Delettrez, J. Can. J. Phys. 64, 932 (1986).
22. Goncharov, V. N. Sangster, T. C. Radha, P. B. Betti, R. Boehly, T. R. Collins, T. J. B. Craxton, R. S. Delettrez, J. A. Epstein, R. Glebov, V. Yu. Hu, S. X. Igumenshchev, I. V. Knauer, J. P. Loucks, S. J. Marozas, J. A. Marshall, F. J. McCrory, R. L. McKenty, P. W. Meyerhofer, D. D. Regan, S. P. Seka, W. Skupsky, S. Smalyuk, V. A. Soures, J. M. Stoeckl, C. Shvarts, D. Frenje, J. A. Petrasso, R. D. Li, C. K. Sguin, F. Manheimer, W. and Colombant, D. G. Phys. Plasmas 15, 056310 (2008).
23. Igumenshchev, I. V. Seka, W. Edgell, D. H. Michel, D. T. Froula, D. H. Goncharov, V. N. Craxton, R. S. Divol, L. Epstein, R. Follett, R. Kelly, J. H. Kosc, T. Z. Maximov, A. V. McCrory, R. L. Meyerhofer, D. D. Michel, P. Myatt, J. F. Sangster, T. C. Shvydky, A. Skupsky, S. and Stoeckl, C. Phys. Plasmas 19, 056314 (2012).
24. Liepin’sh, V. Ya. Autom. Control Comput. Sci. 30, 27 (1996).
25. Radha, P. B. Goncharov, V. N. Collins, T. J. B. Delettrez, J. A. Elbaz, Y. Glebov, V. Yu. Keck, R. L. Keller, D. E. Knauer, J. P. Marozas, J. A. Marshall, F. J. McKenty, P. W. Meyerhofer, D. D. Regan, S. P. Sangster, T. C. Shvarts, D. Skupsky, S. Srebro, Y. Town, R. P. J. and Stoeckl, C. Phys. Plasmas 12, 032702 (2005).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

High Power Laser Science and Engineering
  • ISSN: 2095-4719
  • EISSN: 2052-3289
  • URL: /core/journals/high-power-laser-science-and-engineering
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed