Skip to main content Accessibility help
×
×
Home

Quantum electrodynamics experiments with colliding petawatt laser pulses

  • I. C. E. Turcu (a1) (a2) (a3), B. Shen (a4) (a5) (a6), D. Neely (a1), G. Sarri (a7), K. A. Tanaka (a3), P. McKenna (a8), S. P. D. Mangles (a9), T.-P. Yu (a10), W. Luo (a11), X.-L. Zhu (a10) (a12) and Y. Yin (a10)...

Abstract

A new generation of high power laser facilities will provide laser pulses with extremely high powers of 10 petawatt (PW) and even 100 PW, capable of reaching intensities of $10^{23}~\text{W}/\text{cm}^{2}$ in the laser focus. These ultra-high intensities are nevertheless lower than the Schwinger intensity $I_{S}=2.3\times 10^{29}~\text{W}/\text{cm}^{2}$ at which the theory of quantum electrodynamics (QED) predicts that a large part of the energy of the laser photons will be transformed to hard Gamma-ray photons and even to matter, via electron–positron pair production. To enable the investigation of this physics at the intensities achievable with the next generation of high power laser facilities, an approach involving the interaction of two colliding PW laser pulses is being adopted. Theoretical simulations predict strong QED effects with colliding laser pulses of ${\geqslant}10~\text{PW}$ focused to intensities ${\geqslant}10^{22}~\text{W}/\text{cm}^{2}$ .

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Quantum electrodynamics experiments with colliding petawatt laser pulses
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Quantum electrodynamics experiments with colliding petawatt laser pulses
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Quantum electrodynamics experiments with colliding petawatt laser pulses
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to:  I. C. E. Turcu, STFC Rutherford Appleton Laboratory, Central Laser Facility, Oxfordshire, OX11 0QX, UK. Email: edmond.turcu@stfc.ac.uk

References

Hide All
1. Schwinger, J. Phys. Rev. 82, 664 (1951).
2. Danson, C. Hillier, D. Hopps, N. and Neely, D. High Power Laser Sci. Eng. 3, e3 (2015).
3. Turcu, I. C. E. Negoita, F. Jaroszynski, D. A. Mckenna, P. Balascuta, S. Ursescu, D. Dancus, I. Cernaianu, M. O. Tataru, M. V. Ghenuche, P. Stutman, D. Boianu, A. Risca, M. Toma, M. Petcu, C. Acbas, G. Yoffe, S. R. Noble, A. Ersfeld, B. Brunetti, E. Capdessus, R. Murphy, C. Ridgers, C. P. Neely, D. Mangles, S. P. D. Gray, R. J. Thomas, A. G. R. Kirk, J. G. Ilderton, A. Marklund, M. Gordon, D. F. Hafizi, B. Kaganovich, D. Palastro, J. P. D’humieres, E. Zepf, M. Sarri, G. Gies, H. Karbstein, F. Schreiber, J. Paulus, G. G. Dromey, B. Harvey, C. Di Piazza, A. Keitel, C. H. Kaluza, M. C. Gales, S. and Zamfir, N. V. Rom. Rep. Phys. 68, S145 (2016) and references therein referring to QED theory.
4. Negoita, F. Roth, M. Thirolf, P. G. Tudisco, S. Hannachi, F. Moustaizis, S. Pomerantz, I. McKenna, P. Fuchs, J. Sphor, K. Acbas, G. Anzalone, A. Audebert, P. Balascuta, S. Cappuzzello, F. Cernaianu, M. O. Chen, S. Dancus, I. Freeman, R. Geissel, H. Genuche, P. Gizzi, L. A. Gobet, F. Gosselin, G. Gugiu, M. Higginson, D. P. D’humières, E. Ivan, C. Jaroszynski, D. Kar, S. Lamia, L. Leca, V. Neagu, L. Lanzalone, G. Méot, V. Mirfayzi, S. R. Mitu, I. O. Morel, P. Murphy, C. Petcu, C. Petrascu, H. Petrone, C. Raczka, P. Risca, M. Rotaru, F. Santos, J. J. Schumacher, D. Stutman, D. Tarisien, M. Tataru, M. Tatulea, B. Turcu, I. C. E. Versteegen, M. Ursescu, D. Gales, S. and Zamfir, N. V. Rom. Rep. Phys. 68, S37 (2016).
5. Gales, S. Tanaka, K. A. Balabanski, D. L. Negoita, F. Stutman, D. Tesileanu, O. Ur, C. A. Ursescu, D. Ataman, S. Cernaianu, M. O. Dancus, I. Diaconescu, B. Djourelov, N. Filipescu, D. Ghenuche, P. Matei, C. Seto, K. D’Alessi, L. Zeng, M. and Zamfir, N. V. Rep. Prog. Phys. 81, 094301 (2018).
6. Shen, B. Bu, Z. Xu, J. Xu, T. Ji, L.-L. Li, R. and Xu, Z. Plasma Phys. Control. Fusion 60, 044002 (2018).
7. Strickland, D. and Mourou, G. Opt. Commun. 56, 219 (1985).
8. Cole, J. M. Behm, K. T. Gerstmayr, E. Blackburn, T. G. Wood, J. C. Baird, C. D. Duff, M. J. Harvey, C. Ilderton, A. Joglekar, A. S. Krushelnick, K. Kuschel, S. Marklund, M. McKenna, P. Murphy, C. D. Poder, K. Ridgers, C. P. Samarin, G. M. Sarri, G. Symes, D. R. Thomas, A. G. R. Warwick, J. Zepf, M. Najmudin, Z. and Mangles, S. P. D. Phys. Rev. X 8, 011020 (2018).
9. Poder, K. Tamburini, M. Sarri, G. Di Piazza, A. Kuschel, S. Baird, C. D. Behm, K. Bohlen, S. Cole, J. M. Corvan, D. J. Duff, M. Gerstmayr, E. Keitel, C. H. Krushelnick, K. Mangles, S. P. D. McKenna, P. Murphy, C. D. Najmudin, Z. Ridgers, C. P. Samarin, G. M. Symes, D. R. Thomas, A. G. R. Warwick, J. and Zepf, M. Phys. Rev. X 8, 031004 (2018).
10. Hooker, C. J. Collier, J. L. Chekhlov, O. Clarke, R. Divall, E. Ertel, K. Fell, B. Foster, P. Hancock, S. Langley, A. Neely, D. and Smith, J. J. Phys. IV 133, 673 (2006).
11. Zhu, X.-L. Yu, T.-P. Sheng, Z.-M. Yin, Y. Turcu, I. C. E. and Pukhov, A. Nature Commun. 7, 13686 (2016).
12. Li, H.-Z. Yu, T.-P. Liu, J.-J. Yin, Y. Zhu, X.-L. Capdessus, R. Pegoraro, F. Sheng, Z.-M. McKenna, P. and Shao, F.-Q. Sci. Rep. 7, 17312 (2017).
13. Liu, J.-J. Yu, T.-P. Yin, Y. Zhu, X.-L. and Shao, F.-Q. Opt. Express 24, 15978 (2016).
14. Liu, J.-X. Ma, Y.-Y. Yu, T.-P. Zhao, J. Yang, X.-H. Gan, L.-F. Zhang, G-B. Zhao, Y. Zhang, S.-J. Liu, J.-J. Zhuo, H.-B. Shao, F.-Q. and Kawata, S. Plasma Phys. Control. Fusion 58, 125007 (2016).
15. Zhu, X.-L. Zhu, X.-L. Chen, M. Yu, T.-P. Weng, S.-M. Hu, L.-X. McKenna, P. and Sheng, Z.-M. Appl. Phys. Lett. 112, 174102 (2018).
16. Luo, W. Zhu, Y.-B. Zhuo, H.-B. Ma, Y.-Y. Song, Y.-M. Zhu, Z.-C. Wang, X.-D. Li, X.-H. Turcu, I. C. E. and Chen, M. Phys. Plasmas 22, 063112 (2015).
17. Liu, W. Y. Luo, W. Yuan, T. Yu, J. Y. Chen, M. and Sheng, Z. M. Phys. Plasmas 24, 103130 (2017).
18. Luo, W. Liu, W.-Y. Yuan, T. Chen, M. Yu, J.-Y. Li, F.-Y. Del Sorbo, D. Ridgers, C. P. and Sheng, Z.-M. Sci. Rep. 8, 8400 (2018).
19. Yu, J. Y. Yuan, T. Liu, W. Y. Chen, M. Luo, W. Weng, S. M. and Sheng, Z. M. Plasma Phys. Control. Fusion 60, 044011 (2018).
20. Luo, W. Wu, S.-D. Liu, W.-Y. Ma, Y.-Y. Li, F.-Y. Yuan, T. Yu, J.-Y. Chen, M. and Sheng, Z.-M. Plasma Phys. Control. Fusion 60, 095006 (2018).
21. Ritus, V. I. J. Russ. Laser Res. 6, 497 (1985).
22. Kirk, J. G. Bell, A. R. and Arka, I. Plasma Phys. Control. Fusion 51, 85008 (2009).
23. Di Piazza, A. Müller, C. Hatsagortsyan, K. Z. and Keitel, C. H. Rev. Mod. Phys. 84, 1177 (2012).
24. Ziener, Ch. Foster, P. S. Divall, E. J. Hooker, C. J. Hutchinson, M. H. R. Langley, A. J. and Neely, D. J. Appl. Phys. 93, 768 (2003).
25. Corvan, D. J. Dzelzainis, T. Hyland, C. Nersisyan, G. Yeung, M. Zepf, M. and Sarri, G. Opt. Express 24, 3127 (2016).
26. Leemans, W. P. and Esarey, E. Phys. Today 62, 44 (2009).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

High Power Laser Science and Engineering
  • ISSN: 2095-4719
  • EISSN: 2052-3289
  • URL: /core/journals/high-power-laser-science-and-engineering
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed