Skip to main content
×
Home
    • Aa
    • Aa

Raman–Brillouin interplay for inertial confinement fusion relevant laser–plasma interaction

  • C. Riconda (a1) and S. Weber (a2)
Abstract

The co-existence of the Raman and Brillouin backscattering instability is an important issue for inertial confinement fusion. The present paper presents extensive one-dimensional (1D) particle-in-cell (PIC) simulations for a wide range of parameters extending and complementing previous findings. PIC simulations show that the scenario of reflectivity evolution and saturation is very sensitive to the temperatures, intensities, size of plasma and boundary conditions employed. The Langmuir decay instability is observed for rather small $k_{epw}{\it\lambda}_{D}$ but has no influence on the saturation of Brillouin backscattering, although there is a clear correlation of Langmuir decay instability modes and ion-fractional decay for certain parameter ranges. Raman backscattering appears at any intensity and temperature but is only a transient phenomenon. In several configurations forward as well as backward Raman scattering is observed. For the intensities considered, $I{\it\lambda}_{o}^{2}$ above $10^{15}~\text{W}~{\rm\mu}\text{m}^{2}/\text{cm}^{2}$ , Raman is always of bursty nature. A particular setup allows the simulation of multi-speckle aspects in which case it is found that Raman is self-limiting due to strong modifications of the distribution function. Kinetic effects are of prime importance for Raman backscattering at high temperatures. No unique scenario for the saturation of Raman scattering or Raman–Brillouin competition does exist. The main effect in the considered parameter range is pump depletion because of large Brillouin backscattering. However, in the low $k_{epw}{\it\lambda}_{D}$ regime the presence of ion-acoustic waves due to the Langmuir decay instability from the Raman created electron plasma waves can seed the ion-fractional decay and affect the Brillouin saturation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Raman–Brillouin interplay for inertial confinement fusion relevant laser–plasma interaction
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Raman–Brillouin interplay for inertial confinement fusion relevant laser–plasma interaction
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Raman–Brillouin interplay for inertial confinement fusion relevant laser–plasma interaction
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Correspondence to:  C. Riconda, LULI-UPMC Universite Paris 6: Sorbonne Universites, CNRS, Ecole Polytechnique, CEA: Universite Paris-Saclay, 75252 Paris, France. Email: caterina.riconda@upmc.fr
References
Hide All
1. Lindl J. Amendt P. Berger R. L. Glendinning S. Glenzer S. Haan S. Kauffman R. Landen O. and Suter L. Phys. Plasmas 11, 339 (2004).
2. Lindl J. and Moses E. Phys. Plasmas 18, 050901 (2011).
3. Hurricane O. Callahan D. Casey D. Celliers P. Cerjan C. Dewald E. Dittrich T. Doeppner T. Hinkel D. Hopkins L. B. Kline J. LePape S. Ma T. MacPhee A. Milovich J. Park A. Park H.-S. Patel P. Remington B. Salmonson J. Springer P. and Tommasini R. Nature 506, 343 (2014).
4. Ebrardt J. and Chaput J. J. Phys.: Conf. Ser. 244, 032017 (2010).
5. He X. Zhang W. and , EPJ Web Conf. 59, 01009 (2013).
6. Aldrich C. Bezzerides B. DuBois D. and Rose H. Comments Plasma Phys. Control. Fusion 10, 1 (1986).
7. Rose H. DuBois D. and Bezzerides B. Phys. Rev. Lett. 58, 2547 (1987).
8. Bezzerides B. DuBois D. and Rose H. Phys. Rev. Lett. 70, 2569 (1993).
9. Kolber T. Rozmus W. and Tikhonchuk V. Phys. Plasmas 2, 256 (1994).
10. Rose H. Phys. Plasmas 4, 437 (1996).
11. Estabrook K. Kruer W. and Haines M. Phys. Fluids B 1, 1282 (1989).
12. Sanbonmatsu K. Vu H. DuBois D. and Bezzerides B. Phys. Rev. Lett. 82, 932 (1999).
13. Sanbonmatsu K. Vu H. Bezzerides B. and DuBois D. Phys. Plasmas 7, 1723 (2000).
14. Sanbonmatsu K. Vu H. DuBois D. and Bezzerides B. Phys. Plasmas 7, 2824 (2000).
15. Vu H. DuBois D. and Bezzerides B. Phys. Plasmas 14, 012702 (2007).
16. Yin L. Albright B. Bowers K. Daughton W. and Rose H. Phys. Plasmas 15, 013109 (2008).
17. Winjum B. Fahlen J. Tsung F. and Mori W. Phys. Rev. E 81, 045401 (2010).
18. Ellis I. Strozzi D. Winjum B. Tsung F. Grismayer T. Mori W. Fahlen J. and Williams E. Phys. Plasmas 19, 112704 (2012).
19. Giacone R. and Vu H. Phys. Plasmas 5, 1455 (1998).
20. Riconda C. Hüller S. Myatt J. and Pesme D. Phys. Scr. T84, 217 (2000).
21. Divol L. Cohen B. Williams E. Langdon A. and Lasinski B. Phys. Plasmas 10, 3728 (2003).
22. Cohen B. Divol L. Langdon A. and Williams E. Phys. Plasmas 12, 052703 (2005).
23. Berger R. Suter L. Divol L. London R. Chapman T. Froula D. Meezan N. Neumayer P. and Glenzer S. Phys. Rev. E 91, 031103 (2015).
24. Chapman T. Winjum B. Brunner S. Berger R. and Banks J. Phys. Plasmas 22, 092116 (2015).
25. Kirkwood R. Moody J. Kline J. Dewald E. Glenzer S. Divol L. Michel P. Hinkel D. Berger R. Williams E. Milovich J. Yin L. Rose H. MacGowan B. Landen O. Rosen M. and Lindl J. Plasma. Phys. Control. Fusion 55, 103001 (2013).
26. Atzeni S. Ribeyre X. Schurtz G. Schmitt A. Canaud B. Betti R. and Perkins L. Nucl. Fusion 54, 054008 (2014).
27. Batani D. Baton S. Casner A. Depierreux S. Hohenberger M. Klimo O. Koenig M. Labaune C. Ribeyre X. Rousseaux C. Schurtz G. Theobald W. and Tikhonchuk V. Nucl. Fusion 54, 054009 (2014).
28. Temporal M. Canaud B. Garbett W. Ramis R. and Weber S. High Power Laser Sci. Eng. 2, e8 (2014).
29. Weber S. and Riconda C. High Power Laser Sci. Eng. 3, e6 (2015).
30. Forslund D. Kindel J. and Lindman E. Phys. Fluids 18, 1002 (1975).
31. Dautray R. and Watteau J.-P. (Eds.) in La fusion thermonucléaire inertielle par laser, partie 1, Vol. 1, (Eyrolles, 1993).
32. Oraevskii V. and Sagdeev R. Sov. Phys. Tech. Phys. 7, 955 (1963).
33. Ichikawa Y. Phys. Fluids 9, 1454 (1966).
34. Obiki T. Itatani R. and Otani Y. Phys. Rev. Lett. 20, 184 (1968).
35. Labaune C. Baldis H. Bauer B. Tikhonchuk V. and Laval G. Phys. Plasmas 5, 234 (1998).
36. Depierreux S. Fuchs J. Labaune C. Michard A. Baldis H. Pesme D. Hüller S. and Laval G. Phys. Rev. Lett. 84, 2869 (2000).
37. Depierreux S. Labaune C. Fuchs J. Pesme D. Tikhonchuk V. and Baldis H. Phys. Rev. Lett. 89, 045001 (2002).
38. Kline J. Montgomery D. Bezzerides B. Cobble J. DuBois D. Johnson R. Rose H. Yin L. and Vu H. Phys. Rev. Lett. 94, 0175003 (2005).
39. Drake R. and Batha S. Phys. Fluids B 3, 2936 (1991).
40. Villeneuve D. Baker K. Drake R. Sleaford B. LaFontaine B. Estabrook K. and Prasad M. Phys. Rev. Lett. 71, 368 (1993).
41. Baker K. Drake R. Bauer B. Estabrook K. Rubenchik A. Labaune C. Baldis H. Renard N. Baton S. Schifano E. Michard A. Seka W. and Bahr R. Phys. Rev. Lett. 77, 67 (1996).
42. Fernandez J. Cobble J. Failor B. Dubois D. Montgomery D. Rose H. Vu H. Wilde B. Wilke M. and Chrien R. Phys. Rev. Lett. 77, 2702 (1996).
43. Kirkwood R. MacGowan B. Montgomery D. Afeyan B. Kruer W. Moody J. Estabrook K. Back C. Glenzer S. Blain M. Williams E. Berger R. and Lasinski B. Phys. Rev. Lett. 77, 2706 (1996).
44. Montgomery D. Afeyan B. Cobble J. Fernandez J. Wilke M. Glenzer S. Kirkwood R. MacGowan B. Moody J. Lindman E. Munro D. Wilde B. Rose H. Dubois D. Bezzerides B. and Vu H. Phys. Plasmas 5, 1973 (1998).
45. Montgomery D. Cobble J. Fernandez J. Focia R. Johnson R. Renard-LeGalloudec N. Rose H. and Russell D. Phys. Plasmas 9, 2311 (2002).
46. Bonnaud G. Pesme D. and Pellat R. Phys. Fluids B 2, 1618 (1990).
47. Karttunen S. Phys. Rev. A 23, 206 (1981).
48. Heikkinen J. and Karttunen S. Phys. Fluids 29, 1291 (1986).
49. Bezzerides B. DuBois D. Rose H. and Russell D. Phys. Scr. T63, 16 (1996).
50. Berger R. Still C. Williams E. and Langdon A. Phys. Plasmas 5, 4337 (1998).
51. Russell D. DuBois D. and Rose H. Phys. Plasmas 6, 1294 (1999).
52. Korotkevich A. Lushnikov P. and Rose H. Phys. Plasmas 22, 012107 (2015).
53. Rose H. Phys. Plasmas 12, 012318 (2005).
54. Yin L. Albright B. Bowers K. Daughton W. and Rose H. Phys. Rev. Lett. 99, 265004 (2007).
55. Rose H. Phys. Plasmas 15, 042311 (2008).
56. Banks J. Berger R. Brunner S. Cohen B. and Hittinger J. Phys. Plasmas 18, 052102 (2011).
57. Winjum B. Berger R. Chapman T. Banks J. and Brunner S. Phys. Rev. Lett. 111, 105002 (2013).
58. Riconda C. Weber S. Tikhonchuk V. and Heron A. Phys. Plasmas 18, 092701 (2011).
59. Weber S. Riconda C. Klimo O. Heron A. and Tikhonchuk V. Phys. Rev. E 85, 016403 (2012).
60. Maier M. Kaiser W. and Giordmaine J. Phys. Rev. Lett. 17, 1275 (1966).
61. Weber S. Riconda C. and Tikhonchuk V. Phys. Rev. Lett. 94, 055005 (2005).
62. Weber S. Riconda C. and Tikhonchuk V. Phys. Plasmas 12, 043101 (2005).
63. Weber S. Lontano M. Passoni M. Riconda C. and Tikhonchuk V. Phys. Plasmas 12, 112107 (2005).
64. Vu H. DuBois D. and Bezzerides B. Phys. Plasmas 9, 1745 (2002).
65. Brunner S. and Valeo E. Phys. Rev. Lett. 93, 145003 (2004).
66. Vu H. DuBois D. and Bezzerides B. Phys. Rev. Lett. 86, 4306 (2001).
67. Vu H. Yin L. DuBois D. Bezzerides B. and Dodd E. Phys. Rev. Lett. 95, 245003 (2005).
68. Yin L. Daughton W. Albright B. Bezzerides B. DuBois D. Kindel J. and Vu H. Phys. Rev. E 73, 025401 (2006).
69. Hara K. Chapman T. Banks J. Brunner S. Joseph I. Berger R. and Boyd I. Phys. Plasmas 22, 022104 (2015).
70. Langdon A. and Hinkel D. Phys. Rev. Lett. 89, 015003 (2002).
71. Cohen B. Lasinski B. Langdon A. and Williams E. Phys. Plasmas 4, 956 (1997).
72. Pesme D. Riconda C. and Tikhonchuk V. Phys. Plasmas 12, 092101 (2005).
73. Pesme D. Riconda C. and Tikhonchuk V. Phys. Plasmas 16, 089903 (2009).
74. Riconda C. Heron A. Pesme D. Hüller S. Tikhonchuk V. and Detering F. Phys. Rev. Lett. 94, 055003 (2005).
75. Riconda C. Heron A. Pesme D. Hüller S. Tikhonchuk V. and Detering F. Phys. Plasmas 12, 112308 (2005).
76. Cohen B. Williams E. Berger R. Pesme D. and Riconda C. Phys. Plasmas 16, 032701 (2009).
77. Cohen B. Williams E. Berger R. Pesme D. and Riconda C. Phys. Plasmas 16, 089902 (2009).
78. Chapman T. Brunner S. Banks J. Berger R. Cohen B. and Williams E. Phys. Plasmas 21, 042107 (2014).
79. Albright B. Yin L. Bowers K. and Bergen B. Phys. Plasmas 23, 032703 (2016).
80. Berger R. Brunner S. Chapman T. Divol L. Still C. and Valeo E. Phys. Plasmas 20, 032107 (2013).
81. Batha S. Bradley K. Drake R. Estabrook K. Kruer W. Montgomery D. and Remington B. Phys. Plasmas 1, 1985 (1994).
82. Bertrand P. Ghizzo A. Karttunen S. Pättikangas T. Salomaa R. and Shoucri M. Phys. Plasmas 2, 3115 (1995).
83. Pesme D. Hüller S. Myatt J. Riconda C. Maximov A. Tikhonchuk V. Labaune C. Fuchs J. Depierreux S. and Baldis H. Plasma Phys. Control. Fusion 44, B53 (2002).
84. Fahlen J. Winjum B. Grismayer T. and Rose H. Phys. Rev. E 83, 045401 (2011).
85. Rambo P. Wilks S. and Kruer W. Phys. Rev. Lett. 79, 83 (1997).
86. Cohen B. Divol L. Langdon A. and Williams E. Phys. Plasmas 13, 022705 (2006).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

High Power Laser Science and Engineering
  • ISSN: 2095-4719
  • EISSN: 2052-3289
  • URL: /core/journals/high-power-laser-science-and-engineering
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 14
Total number of PDF views: 142 *
Loading metrics...

Abstract views

Total abstract views: 187 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st October 2017. This data will be updated every 24 hours.