Skip to main content
×
×
Home

Theory of light sail acceleration by intense lasers: an overview

  • Andrea Macchi (a1)
Abstract

A short overview of the theory of acceleration of thin foils driven by the radiation pressure of superintense lasers is presented. A simple criterion for radiation pressure dominance at intensities around $5 \times 10^{20}\ \mbox{W cm}^{-2}$ is given, and the possibility for fast energy gain in the relativistic regime is discussed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Theory of light sail acceleration by intense lasers: an overview
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Theory of light sail acceleration by intense lasers: an overview
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Theory of light sail acceleration by intense lasers: an overview
      Available formats
      ×
Copyright
The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence .
Corresponding author
Correspondence to: A. Macchi, Dipartimento di Fisica ‘Enrico Fermi’, largo Bruno Pontecorvo 3, I-56127 Pisa, Italy. Email: andrea.macchi@ino.it. Web: www.df.unipi.it/∼macchi.
References
Hide All
1. Zander, F. A. Technika i Zhizn 13, 15 (1924) (in Russian).
2. Veksler, V. I. At. Energy 2, 525 (1957).
3. Forward, R. L. J. Spacecraft 21, 187 (1984).
4. Gilster, P. Centauri Dreams: Imagining and Planning Interstellar Exploration  chapter 6 (Springer Science + Business Media, 2004).
5. Marx, G. Nature 211, 22 (1966).
6. Macchi, A. A Superintense Laser–Plasma Interaction Theory Primer, chapter 5, SpringerBriefs in Physics, (Springer, 2013).
7. Simmons, J. F. L. and McInnes, C. R. Am. J. Phys. 61, 205 (1993).
8. Landau, L. D. and Lifshitz, E. M. The Classical Theory of Fields 2nd edn  chapter 78 p. 250 (Elsevier, Oxford, 1962).
9. Esirkepov, T. Borghesi, M. Bulanov, S. V. Mourou, G. and Tajima, T. Phys. Rev. Lett. 92, 175003 (2004).
10. Daido, H. Nishiuchi, M. and Pirozhkov, A. S. Rep. Prog. Phys. 75, 056401 (2012).
11. Macchi, A. Borghesi, M. and Passoni, M. Rev. Mod. Phys. 85, 751 (2013).
12. Macchi, A. Sgattoni, A. Sinigardi, S. Borghesi, M. and Passoni, M. Plasma Phys. Control. Fusion 55, 124020 (2013).
13. Fernandez, J. C. Albright, B. J. Beg, F. N. Foord, M. E. Hegelich, B. M. Honrubia, J. J. Roth, M. Stephens, R. B. and Yin, L. Nucl. Fusion 54, 054006 (2014).
14. Vshivkov, V. A. Naumova, N. M. Pegoraro, F. and Bulanov, S. V. Phys. Plasmas 5, 2727 (1998).
15. Macchi, A. A Superintense Laser–Plasma Interaction Theory Primer, chapter 3, SpringerBriefs in Physics, pp. 5253. (Springer, 2013).
16. Macchi, A. Veghini, S. and Pegoraro, F. Phys. Rev. Lett. 103, 085003 (2009).
17. Macchi, A. Veghini, S. Liseykina, T. V. and Pegoraro, F. New J. Phys. 12, 045013 (2010).
18. Macchi, A. Cattani, F. Liseykina, T. V. and Cornolti, F. Phys. Rev. Lett. 94, 165003 (2005).
19. Robinson, A. P. L. Gibbon, P. Zepf, M. Kar, S. Evans, R. G. and Bellei, C. Plasma Phys. Control. Fusion 51, 024004 (2009).
20. Grech, M. Skupin, S. Diaw, A. Schlegel, T. and Tikhonchuk, V. T. New J. Phys. 13, 123003 (2011).
21. Eliasson, B. Liu, C. S. Shao, X. Sagdeev, R. Z. and Shukla, P. K. New J. Phys. 11, 073006 (2009).
22. Zhang, X. Shen, B. Li, X. Jin, Z. and Wang, F. Phys. Plasmas 14, 073101 (2007).
23. Klimo, O. Psikal, J. Limpouch, J. and Tikhonchuk, V. T. Phys. Rev. ST Accel. Beams 11, 031301 (2008).
24. Robinson, A. P. L. Zepf, M. Kar, S. Evans, R. G. and Bellei, C. New J. Phys. 10, 013021 (2008).
25. Tamburini, M. Liseykina, T. V. Pegoraro, F. and Macchi, A. Phys. Rev. E 85, 016407 (2012).
26. Henig, A. Steinke, S. Schnürer, M. Sokollik, T. Hörlein, R. Kiefer, D. Jung, D. Schreiber, J. Hegelich, B. M. Yan, X. Q. Meyer ter Vehn, J. Tajima, T. Nickles, P. V. Sandner, W. and Habs, D. Phys. Rev. Lett. 103, 245003 (2009).
27. Dollar, F. Zulick, C. Thomas, A. G. R. Chvykov, V. Davis, J. Kalinchenko, G. Matsuoka, T. McGuffey, C. Petrov, G. M. Willingale, L. Yanovsky, V. Maksimchuk, A. and Krushelnick, K. Phys. Rev. Lett. 108, 175005 (2012).
28. Kar, S. Kakolee, K. F. Qiao, B. Macchi, A. Cerchez, M. Doria, D. Geissler, M. McKenna, P. Neely, D. Osterholz, J. Prasad, R. Quinn, K. Ramakrishna, B. Sarri, G. Willi, O. Yuan, X. Y. Zepf, M. and Borghesi, M. Phys. Rev. Lett. 109, 185006 (2012).
29. Aurand, B. Kuschel, S. Jaeckel, O. Roedel, C. Zhao, H. Y. Herzer, S. Paz, A. E. Bierbach, J. Polz, J. Elkin, B. Paulus, G. G. Karmakar, A. Gibbon, P. Kuehl, T. and Kaluza, M. C. New J. Phys. 15, 033031 (2013).
30. Steinke, S. Hilz, P. Schnürer, M. Priebe, G. Bränzel, J. Abicht, F. Kiefer, D. Kreuzer, C. Ostermayr, T. Schreiber, J. Andreev, A. A. Yu, T. P. Pukhov, A. and Sandner, W. Phys. Rev. ST Accel. Beams 16, 011303 (2013).
31. Qiao, B. Kar, S. Geissler, M. Gibbon, P. Zepf, M. and Borghesi, M. Phys. Rev. Lett. 108, 115002 (2012).
32. Bulanov, S. V. Echkina, E. Yu. Esirkepov, T. Zh. Inovenkov, I. N. Kando, M. Pegoraro, F. and Korn, G. Phys. Rev. Lett. 104, 135003 (2010).
33. Bulanov, S. V. Echkina, E. Yu. Esirkepov, T. Zh. Inovenkov, I. N. Kando, M. Pegoraro, F. and Korn, G. Phys. Plasmas 17, 063102 (2010).
34. Sgattoni, A. Londrillo, P. Macchi, A. and Passoni, M. Phys. Rev. E 85, 036405 (2012).
35. d’Humières, E. Brantov, A. Bychenkov, V. Yu. and Tikhonchuk, V. T. Phys. Plasmas 20, 023103 (2013).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

High Power Laser Science and Engineering
  • ISSN: 2095-4719
  • EISSN: 2052-3289
  • URL: /core/journals/high-power-laser-science-and-engineering
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Full text views

Total number of HTML views: 16
Total number of PDF views: 311 *
Loading metrics...

Abstract views

Total abstract views: 345 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th July 2018. This data will be updated every 24 hours.