Article contents
An active nitrogen cycle on Mars sufficient to support a subsurface biosphere
Published online by Cambridge University Press: 16 January 2012
Abstract
Mars' total atmospheric nitrogen content is 0.2 mbar. One-dimensional (1D) photochemical simulations of Mars' atmosphere show that nitric acid (HNO3(g)), the most soluble nitrogen oxide, is the principal reservoir species for nitrogen in its lower atmosphere, which amounts to a steady-state value of 6×10−2 kg or 4 moles, conditions of severe nitrogen deficiency. Mars could, however, support ∼1015 kg of biomass (∼1 kg N m−2) from its current atmospheric nitrogen inventory. The terrestrial mass ratio of nitrogen in biomass to that in the atmosphere is ∼10−5; applying this ratio to Mars yields ∼1010 kg of total biomass – also, conditions of severe nitrogen deficiency. These amounts, however, are lower limits as the maximum surface-sink of atmospheric nitrogen is 2.8 mbar (9×1015 kg of N), which indicates, in contradistinction to the Klingler et al. (1989), that biological metabolism would not be inhibited in the subsurface of Mars. Within this context, we explore HNO3 deposition on Mars' surface (i.e. soil and ice-covered regions) on pure water metastable thin liquid films. We show for the first time that the negative change in Gibbs free energy increases with decreasing HNO3(g) (NO3−(aq)) in metastable thin liquid films that may exist on Mars' surface. We also show that additional reaction pathways are exergonic and may proceed spontaneously, thus providing an ample source of energy for nitrogen fixation on Mars. Lastly, we explore the dissociation of HNO3(g) to form NO3−(aq) in metastable thin liquid films on the Martian surface via condensed phase simulations. These simulations show that photochemically produced fixed nitrogen species are not only released from the Martian surface to the gas-phase, but more importantly, transported to lower depths from the Martian surface in transient thin liquid films. A putative biotic layer at 10 m depth would produce HNO3 and N2 sinks of −54 and −5×1012 molecules cm−2 s−1, respectively, which is an ample supply of available nitrogen that can be efficiently transported to the subsurface. The downward transport as well as the release to the atmosphere of photochemically produced fixed nitrogen species (e.g. NO2−, NO and NO2) suggests the existence of a transient but active nitrogen cycle on Mars.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 2012
References
- 10
- Cited by