Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-pcn4s Total loading time: 0.559 Render date: 2022-05-29T08:33:12.852Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

The astrobiological case for our cosmic ancestry

Published online by Cambridge University Press:  29 January 2010

Chandra Wickramasinghe*
Affiliation:
Cardiff Centre for Astrobiology, Cardiff University, 2 North Road, CardiffCF10 3DY, UK

Abstract

With steadily mounting evidence that points to a cosmic origin of terrestrial life, a cultural barrier prevails against admitting that such a connection exists. Astronomy continues to reveal the presence of organic molecules and organic dust on a huge cosmic scale, amounting to a third of interstellar carbon tied up in this form. Just as the overwhelming bulk of organics on Earth stored over geological timescales are derived from the degradation of living cells, so it seems likely that interstellar organics in large measure also derive from biology. As we enter a new decade – the year 2010 – a clear pronouncement of our likely alien ancestry and of the existence of extraterrestrial life on a cosmic scale would seem to be overdue.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, D.A. & Wickramasinghe, D.T. (1981). Nature 294, 239240.CrossRefGoogle Scholar
Arrhenius, S. (1908). Worlds in the Making. Harper, London.Google Scholar
Brooke, T.Y., Tokunaga, A.T. & Knacke, R.F. (1991). Astron. J. 101, 268278.CrossRefGoogle Scholar
Burchell, M.J., Mann, J.R. & Bunch, A.W. (2004). MNRAS 352, 12731278.CrossRefGoogle Scholar
Butler, R.P. et al. (2006). Astrophys. J. 646(1), 505522.CrossRefGoogle Scholar
Cano, R.J. & Borucki, M. (1995). Science 268, 10601064.CrossRefGoogle Scholar
Chan, K.W. et al. (2001). Astrophys. J. 546, 273278.CrossRefGoogle Scholar
Cockell, C.S. (2008). How deep can life live under rock and ice? In The Seventy Great Mysteries of the Natural World, ed. Benton, M.J., pp. 151153. Thames and Hudson, London.Google Scholar
Crick, F.H.C. & Orgel, L.E. (1973). Icarus 19, 341346.CrossRefGoogle Scholar
Dehel, T., Lorge, F. & Dickinson, M. (2008). J. Electrostatics 66, 463466.CrossRefGoogle Scholar
Franck, S. et al. (2000). J. Geophys. Res. 105, pp. 16511658.CrossRefGoogle Scholar
Furton, D.G. & Witt, A.N. (1992). Astrophys. J. 386, 587.CrossRefGoogle Scholar
Haldane, J.B.S. (1929). The Origin of Life. Chatto and Windys, London.Google Scholar
Harris, M.J. et al. (2002). Proc. SPIE 4495, 192198.CrossRefGoogle Scholar
Herbst, E. & van Dishoeck, E.F. (2009). Ann. Rev. Astron. Astrophys. September.Google Scholar
Horneck, G. et al. (2002). Viable transfer of microorganisms in the solar system and beyond. In Astrobiology. The quest for the conditions of life, eds Horneck, G. & Baumstark-Khan, C.Springer, Berlin.Google Scholar
Hoyle, F. & Wickramasinghe, N.C. (1962). MNRAS 124, 417.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N.C. (1977). Nature 270, 323324.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N.C. (1979). Astrophys. Sp. Sci. 66, 7790.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N.C. (1981). In Comets and the Origin of Life, ed. Ponnamperuma, C., p. 227. D. Reidel, Dordrecht.CrossRefGoogle Scholar
Hoyle, F. and Wickramasinghe, N.C., 1982. Proofs that Life is Cosmic. Colombo: Govt. Press, Sri Lanka (http://www.astrobiology.cf.ac.uk/proofs...pdf)Google Scholar
Hoyle, F. & Wickramasinghe, N.C. (1985). Living Comets. Univ. College, Cardiff Press, Cardiff.Google Scholar
Hoyle, F. & Wickramasinghe, N.C. (1989). Astrophys. Sp. Sci. 154, 143147.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N.C. (1991). The Theory of Cosmic Grains. Kluwer Academic Press, Dordrecht.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N.C. (2000). Astronomical Origins of Life: Steps towards Panspermia. Kluwer Academic Press, Dordrecht.CrossRefGoogle Scholar
Johnson, F.M. (1967). Diffuse interstellar lines and chemical characterisation of interstellar dust. In Interstellar Grains, eds Greenberg, J.M. & Roark, T.P., NASA-SP-140, NASA, Washington DC.Google Scholar
Joseph, R. (2000). Astrobiology: the Origin of Life. University Press California, San Jose.Google Scholar
Joseph, R. (2009). J. Cosmol. 1, 156.Google Scholar
Kaifu, N. et al. (2004). Publ. Astron. Soc. Japan 56, 69–173.CrossRefGoogle Scholar
Kani, R. & Wickramasinghe, N.C. (2009). Int. J. Astrobiology in press.Google Scholar
Krishna Swamy, K.S. (2005). Dust in the Universe. World Scientific Publishing Co., Singapore.CrossRefGoogle Scholar
Krueger, F.R. & Kissel, J. (2000). Stern und Weltraum 39, 326329.Google Scholar
Krueger, F.R., Werther, W., Kissel, J. & Schmid, E.R. (2004). Rapid Comm. Mass Spectros. 18, 103111.CrossRefGoogle Scholar
Lovas, F.J. et al. (2005). J. Am. Chem. Soc. 127, 43454349.CrossRefGoogle Scholar
Marcy, G.W. & Butler, R.P. (1996). Astrophys. J. 464, L147L151.CrossRefGoogle Scholar
Miller, S.L. & Urey, H.C. (1959). Science 130, 245251.CrossRefGoogle Scholar
Motta, V. et al. 2002. Astrophys. J. 574, 719725.CrossRefGoogle Scholar
Nandy, K. (1964). Publ. Roy. Obs. Edin. 4, 57.Google Scholar
Napier, W.M. (2004). MNRAS 348, 4651.CrossRefGoogle Scholar
Napier, W.M., Wickramasinghe, J.T. & Wickramasinghe, N.C. (2007). Int. J. Astrobiology 6(4), 321323.Google Scholar
Oparin, A.I. (1953). The Origin of Life, transl. Margulis, S. Dover, New York.Google Scholar
Perrin, J.-M., Darbon, S. & Sivan, J.-P. (1995). Astron. Astrophys. 304, L21.Google Scholar
Pflug, H.D. (1984). Fundamental Studies and the Future of Science, ed. Wickramasinghe, N.C., Univ. College Cardiff Press, Cardiff.Google Scholar
Rauf, K. & Wickramasinghe, C. (2009). Int. J. Astrobiol. 9, 2934.CrossRefGoogle Scholar
Sandford, S.A. (2008). In Organic Matter in Space: Proc. IAU Symp. No. 251, eds Kwok, S. & Sandford, S.A., p. 299, 18–22 February 2008 Hong Kong. Cambridge Univ. Press, Cambridge.Google Scholar
Sandford, S.A. et al. (2006). Science 314, 1720.CrossRefGoogle Scholar
Sapar, A. & Kuusik, I. (1978a). Publ. Tartu Astrophys. Obs. 46, 7184.Google Scholar
Sapar, A. & Kuusik, I. (1978b). Publ. Tartu Astr. Obs. 46, 717.Google Scholar
Sivan, J.-P. & Perrin, J.-M. (1993). Astrophys. J. 404, 258.CrossRefGoogle Scholar
Smith, J.D.T. et al. (2007). Astrophys. J. 656, 770.CrossRefGoogle Scholar
Snow, T.P. (2001). Spectrochim. Acta Mol. Biomol. Spectros. 57(4), 615626.CrossRefGoogle Scholar
Thaddeus, P. (2006). Phil. Trans. T. Soc. B. 361, 16811687.CrossRefGoogle Scholar
van de Hulst, H.C. (1949). Rech. Astron. Obs. Utrecht, XI, part 2.Google Scholar
Vreeland, R.H., Rosenzweig, W.D. & Powers, D. (2000). Nature 407, 897900.CrossRefGoogle Scholar
Vanysek, V. & Wickramasinghe, N.C. (1975). Astrophys. Sp. Sci. 33, L19.Google Scholar
Wainwright, M., Wickramasinghe, N.C., Narlikar, J.V. & Rajaratnam, P. (2003). FEMS Microbiol. Lett. 218, 161165.CrossRefGoogle Scholar
Wainwright, M., Wickramasinghe, N.C., Narlikar, J.V., Rajaratnam, P. & Perkins, J. (2004). Int. J. Astrobiology 3(1), 1315.CrossRefGoogle Scholar
Wainwright, M., Alharbi, S. & Wickramasinghe, N.C. (2006). Int. J. Astrobiology 5(1), 1315.CrossRefGoogle Scholar
Wallis, M.K. & Wickramasinghe, N.C. (2004). MNRAS 348, 5261.CrossRefGoogle Scholar
Wickramasinghe, N.C. (1967). Interstellar Grains. Chapman and Hall, London.Google Scholar
Wickramasinghe, N.C. (1974). Nature 252, 462463.CrossRefGoogle Scholar
Wickramasinghe, D.T. & Allen, D.A. (1986). Nature, 323, 4446.CrossRefGoogle Scholar
Wickramasinghe, D.T., Hoyle, F., Wickramasinghe, N.C. & Al-Mufti, S. (1986). Earth Moon Planets 36, 295299.CrossRefGoogle Scholar
Wickramasinghe, N.C. & Wickramasinghe, J.T. (2003). Astrophys. Space Sci. 286, 453459.CrossRefGoogle Scholar
Wickramasinghe, J.T., Wickramasinghe, N.C. & Napier, W.M. (2009a). Comets and the Origin of Life. World Scientific Publishing, Singapore.CrossRefGoogle Scholar
Wickramasinghe, J.T., Wickramasinghe, N.C. & Wallis, M.K. (2009b). Int. J. Astrobiology 8(4), 281290.CrossRefGoogle Scholar
31
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The astrobiological case for our cosmic ancestry
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The astrobiological case for our cosmic ancestry
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The astrobiological case for our cosmic ancestry
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *