Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-dwjtz Total loading time: 0.487 Render date: 2022-06-30T08:00:45.870Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Carbonate rocks in the Mojave Desert as an analogue for Martian carbonates

Published online by Cambridge University Press:  01 July 2011

Janice L. Bishop*
Affiliation:
SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043, USA NASA Ames Research Center, Mail Stop 245-3, Moffett Field, CA 94035, USA
Rachel T. Schelble
Affiliation:
Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington, DC 20015, USA
Christopher P. McKay
Affiliation:
NASA Ames Research Center, Mail Stop 245-3, Moffett Field, CA 94035, USA
Adrian J. Brown
Affiliation:
SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043, USA NASA Ames Research Center, Mail Stop 245-3, Moffett Field, CA 94035, USA
Kaysea A. Perry
Affiliation:
SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043, USA
*

Abstract

Carbonate rocks in the Mojave Desert are presented as potential analogues for the carbonates on Mars. Rocks collected from the Little Red Hill site contain iron oxide-bearing coatings that greatly suppress the spectral features due to carbonate of the underlying material and impart a spectral slope. The Mojave Desert was formerly a lush pedogenic soil environment that, over time, transformed into the current arid climate with abundant rock varnish. One niche for microbes in the current desolate environment is inside and underneath the rocks where the microbes profit from solar protection by the iron oxide rock coatings. Carbonates were long predicted to be present on Mars and have recently been detected by instruments on Phoenix and MER and using hyperspectral orbiters such as the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), the Planetary Fourier Spectrometer (PFS) and the Thermal Emission Spectrometer (TES). We describe here the results of a study of carbonate rocks from the Little Red Hill site of the Mojave Desert that includes X-ray diffraction (XRD), chemistry and visible-infrared reflectance spectroscopy. Coatings on the carbonate rocks greatly reduced the strength of the carbonate bands and caused changes in the shape of some bands. We compare these data with a carbonate outcrop at Nili Fossae, Mars. If microbes once inhabited Mars, similar carbonate rocks with iron oxide coatings could have provided a UV-protected niche there as well. Thus, analysis of carbonate-bearing regions on Mars by future landers would be useful sites to search for biosignatures.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arvidson, R.E., Squyres, S.W., Anderson, R.C., Bell, J.F. III, Blaney, D., Brückner, J., Cabrol, N.A., Calvin, W.M., Carr, M.H., Christensen, P.R. et al. (2006). J. Geophysical Res. 111(E02S01), doi:10.1029/2005JE002499.Google Scholar
Bandfield, J.L., Glotch, T.D. & Christensen, P.R. (2003). Science 301, 10841087.CrossRefGoogle Scholar
Beatley, J.C. (1975). Am. Midland Nat. 93(1), 5370.CrossRefGoogle Scholar
Bell, J.F. III, Squyres, S.W., Arvidson, R., Arneson, H.M., Bass, D., Blaney, D.L., Cabrol, N.A., Calvin, W.M., Farmer, J., Farrand, W.H. et al. (2004). Science 305, 800806.CrossRefGoogle Scholar
Bibring, J.-P., Langevin, Y., Mustard, J.F., Poulet, F., Arvidson, R., Gendrin, A., Gondet, B., Mangold, N., Pinet, P. & Forget, F. (2006). Science 312, 400404.CrossRefGoogle Scholar
Bishop, J.L., Koeberl, C., Kralik, C., Froeschl, H., Englert, P.A.J., Andersen, D.W., Pieters, C.M. & Wharton, R.A. (1996). Geochim. Cosmochim. Acta 60, 765785.CrossRefGoogle Scholar
Bishop, J.L., Lougear, A., Newton, J., Doran, P.T., Froeschl, H., Trautwein, A.X., Körner, W. & Koeberl, C. (2001). Geochim. Cosmochim. Acta 65, 28752897.CrossRefGoogle Scholar
Bishop, J.L., Louris, S.K., Rogoff, D.A. & Rothschild, L.J. (2006). Int. J. Astrobiol. 5(1), 112.CrossRefGoogle Scholar
Bishop, J.L., Makarewicz, H.D., Perry, K.A., McKeown, N.K., Parente, M., Tornabene, L.L., Swayze, G.A., Clark, R.N., Mustard, J.F., Murchie, S.L. et al. (2010). In 41st Lunar Planetary Science Conference, abstract no. 2147.Google Scholar
Bishop, J.L., Minitti, M.E., Lane, M.D. & Weitz, C.M. (2003). In 31st Lunar Planetary Science Conference, abstract no. 1516.Google Scholar
Bishop, J.L., Mustard, J.F., Pieters, C.M. & Hiroi, T. (1998a). Meteor. Planet. Sci. 33, 693698.CrossRefGoogle Scholar
Bishop, J.L., Pieters, C.M., Hiroi, T. & Mustard, J.F. (1998b). Meteor. Planet. Sci. 33, 699708.CrossRefGoogle Scholar
Boynton, W.V., Ming, D.W., Sutter, B., Arvidson, R.E., Hoffman, J., Niles, P.B. & Smith, P. (2009). In Lunar Planet Science Conf., p. abstract no. 2434.Google Scholar
Brearley, A.J. (2000). In 34th Lunar Planetary Science Conference, abstract no. 1203.Google Scholar
Brown, A.J. (2006). IEEE Trans. Geosci. Remote Sens. 44, 16011608.CrossRefGoogle Scholar
Brown, A.J., Hook, S.J., Baldridge, A.M., Crowley, J.F., Bridges, N.T., Thomson, B.J., Marion, G.M., de Souza Filho, C.R. & Bishop, J.L. (2010). Earth Planet. Sci. Lett. 297, 174182. doi:1810.1016/j.epsl.2010.1806.1018.CrossRefGoogle Scholar
Brown, A.J. & Storrie-Lombardi, M.C. (2006). In Proc. of SPIE Optics and Photonics, 6309 – Instruments, Methods and Missions for Astrobiology IX, pp. Abstract 28, doi:10.1117/1112.677107.CrossRefGoogle Scholar
Brown, A.J., Walter, M.R. & Cudahy, T.J. (2004). Astrobiology 4(3), 359376.CrossRefGoogle Scholar
Calvin, W.M., King, T.V.V. & Clark, R.N. 1994. J. Geophys. Res. 99, 14 65914 675.CrossRefGoogle Scholar
Christensen, P.R., Bandfield, J.L., Hamilton, V.E., Ruff, S.W., Kieffer, H.H., Titus, T.N., Malin, M.C., Morris, R.V., Lane, M.D., Clark, R.L. et al. (2001). J. Geophys. Res. 106, 23 823823 871.CrossRefGoogle Scholar
Christensen, P.R., Ruff, S.W., Fergason, R.L., Knudson, A.T., Anwar, S., Arvidson, R.E., Bandfield, J.L., Blaney, D.L., Budney, C., Calvin, W.M. et al. (2004). Science 305, 837842.CrossRefGoogle Scholar
Dalton, J.B., Bove, D.J., Mladinich, C.S. & Rockwell, B.W. (2004). Remote Sens. Environ. 89, 455466.CrossRefGoogle Scholar
Ehlmann, B.L., Mustard, J.F., Murchie, S.L., Poulet, F., Bishop, J.L., Brown, A.J., Calvin, W.M., Clark, R.N., Des Marais, D.J., Milliken, R.E. et al. (2008). Science 322, 18281832.CrossRefGoogle Scholar
Ehlmann, B.L., Mustard, J.F., Swayze, G.A., Clark, R.N., Bishop, J.L., Poulet, F., Marais, D.J.D., Roach, L.H., Milliken, R.E. & Wray, J.J. (2009). J. Geophys. Res., 114(CRISM special issue), p. doi:10.1029/2009JE003339.CrossRefGoogle Scholar
Enzel, Y., Brown, W.J., Anderson, R.Y., McFadden, L.D. & Wells, S.G. (1992). Quat. Res. 38(1), 6073.CrossRefGoogle Scholar
Fischer, E. & Pieters, C.M. (1993). Icarus 102, 185202.CrossRefGoogle Scholar
Gaffey, S.J. (1987). J. Geophys. Res. 92, 14291440.CrossRefGoogle Scholar
Gilmore, M.S., Merrill, M.D., Castaño, R., Bornstein, B. & Greenwood, J.P. (2004). Icarus 172, 641646. doi:10.1016/j.icarus.2004.08.009(172).CrossRefGoogle Scholar
Hapke, B. (1981). J. Geophys. Res. 86, 30393054.CrossRefGoogle Scholar
Harris, A.G., Tuttle, E. & Tuttle, S.D. (2004). Geology of the National Parks, 6th edn, Kendall/Hunt Publishing Company, Dubuque, IA.Google Scholar
Herkenhoff, K., Squyres, S., Arvidson, R., Bass, D.S., Bell, J.F. III, Bertelsen, P., Cabrol, N.A., Gaddis, L., Hayes, A.G., Hviid, S.F. et al. (2004). Science 305, 824826.CrossRefGoogle Scholar
Hiroi, T. & Pieters, C.M. (1994). J. Geophys. Res. 99(E5), 10 86710 879.CrossRefGoogle Scholar
Kirkland, L., Herr, K.C. & Adams, P.M. (2003). J. Geophys. Res. 108(E12), 5137, doi:5110.1029/2003JE002105.CrossRefGoogle Scholar
Lane, M.D. & Christensen, P.R. (1997). J. Geophys. Res. 102(E11), 25 58125 592.CrossRefGoogle Scholar
McFadden, L.D., McDonald, E.V., Wells, S.G., Anderson, K., Quade, J. & Forman, S.L. (1998). Geomophology 24(2–3), 101145.CrossRefGoogle Scholar
McFadden, L.D., Wells, S.G. & Dohrenwend, J.C. (1986). Catena 13, 361389.CrossRefGoogle Scholar
McFadden, L.D., Wells, S.G. & Jercinovich, M.J. (1987). Geology 15(6), 504508.2.0.CO;2>CrossRefGoogle Scholar
McGuire, P.C., Bishop, J.L., Brown, A.J., Fraeman, A.A., Marzo, G.A., Morgan, M.F., Murchie, S.L., Mustard, J.F., Parente, M., Pelkey, S.M. et al. (2009). Planet. Space Sci. 57(7), 809815.CrossRefGoogle Scholar
McKay, D.S., Gibson, E.K. Jr., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D.F., Maechling, C.R. & Zare, R.N. (1996). Science 273, 924930.CrossRefGoogle Scholar
McSween, H.Y. Jr., Arvidson, R.E., Bell, J.F. III, Blaney, D.L., Cabrol, N.A., Christensen, P.R., Clark, B.C., Crisp, J.A., Crumpler, L.S., Des Marais, D.J. et al. (2004). Science 305, 842845.CrossRefGoogle Scholar
McSween, H.Y. Jr., Murchie, S.L., Crisp, J.A., Bridges, N.T., Anderson, R.C., Bell, J.F. III, Britt, D.T., Brückner, J., Dreibus, G., Economou, T. et al. (1999). J. Geophys. Res. 104, 86798715.CrossRefGoogle Scholar
Michalski, J.R. & Niles, P.B. (2010). Nat. Geosci. 3, 751755, doi:710.1038/ngeo1971.CrossRefGoogle Scholar
Minitti, M.E., Weitz, C.M., Lane, M.D. & Bishop, J.L. (2007). J. Geophys. Res. 112, E05015 0501105024.CrossRefGoogle Scholar
Morris, R.V., Klingelhöfer, G., Schröder, C., Rodionov, D.S., Yen, A., Ming, D.W., de Souza, P.A.J., Wdowiak, T., Fleischer, I., Gellert, R. et al. (2006). J. Geophys. Res. 111(E12S15), p. doi:10.1029/2006JE002791.CrossRefGoogle Scholar
Morris, R.V., Ruff, S.W., Gellert, R., Ming, D.W., Arvidson, R.E., Clark, B.C., Golden, D.C., Siebach, K., Klingelhöfer, G., Schröder, C. et al. (2010). Science 329, 421424, doi:410.1126/science.1189667.CrossRefGoogle Scholar
Murchie, S.L., Mustard, J.F., Ehlmann, B.L., Milliken, R.E., Bishop, J.L., McKeown, N.K., Noe Dobrea, E.Z., Seelos, F.P., Buczkowski, D.L., Wiseman, S.M. et al. (2009a). J. Geophys. Res. 114(CRISM special issue), doi:10.1029/2009JE003342.Google Scholar
Murchie, S.L., Seelos, F.P., Hash, C.D., Humm, D.C., Malaret, E., McGovern, J.A., Choo, T.H., Seelos, K.D., Buczkowski, D.L., Morgan, M.F. et al. (2009b). J. Geophys. Res. 114(CRISM special issue), doi:10.1029/2009JE003344.Google Scholar
Mustard, J.F. & Pieters, C.M. (1989). J. Geophys. Res. 94, 1361913634.CrossRefGoogle Scholar
Nienow, J.A. (2009). In Encyclopedia of Microbiology, 3rd edn, ed. Schaechter, M., pp. 159173. Elsevier, Oxford.CrossRefGoogle Scholar
Palomba, E., Zinzi, A., Cloutis, E.A., D'Amore, M., Grassi, D. & Maturilli, A. (2009). Icarus 203, 5865.CrossRefGoogle Scholar
Parente, M., Bishop, J.L. & Cuadros, J. (2008). In First Workshop on Martrian Phyllosilicates: Recorders of Aqueous Processes Lunar and Planetary Institute, p. abstract no. 7039.Google Scholar
Perry, K.A., Bishop, J.L., Dyar, M.D., Blake, D.F., Peel, S. & Brown, A.J. (2011). In 42nd Lunar Planetary Science Conference, abstract no. 1554.Google Scholar
Phoenix, V., Konhauser, K., Adams, D.G. & Bottrell, S.H. (2001). Geology 29(9), 823826.2.0.CO;2>CrossRefGoogle Scholar
Pierson, B.K., Oesterle, A. & Murphy, G.L. (1987). FEMS Microbiol. Ecol. 45, 365376.CrossRefGoogle Scholar
Pierson, B.K. & Parenteau, M.N. (2000). FEMS Microbiol. Ecol. 32, 181196.CrossRefGoogle Scholar
Pollack, J.B., Roush, T.L., Witteborn, F., Bregman, J., Wooden, D., Stoker, C., Toon, O.B., Rank, D., Dalton, B. & Freedman, R. (1990). J. Geophys. Res. 95(B9), 14 59514 627.CrossRefGoogle Scholar
Quade, J. (2001). Geology 29, 855858.2.0.CO;2>CrossRefGoogle Scholar
Ramsey, M.S. & Christensen, P.R. (1998). J. Geophys. Res. 103(B1), 577596.CrossRefGoogle Scholar
Reynolds, R.L., Reheis, M., Yount, J. & Lamothe, P. (2006). J. Arid Environ. 66, 4261.CrossRefGoogle Scholar
Rogers, A.D. & Christensen, P.R. (2007). J. Geophys. Res. 112, E01003, doi:01010.01029/02006JE002727.Google Scholar
Salisbury, J.W. & Wald, A. (1992). Icarus 96, 121128.CrossRefGoogle Scholar
Schlesinger, W.H. (1985). Geochim. Cosmochim. Acta 49(1), 5766.CrossRefGoogle Scholar
Schlesinger, W.H., Pippin, J., Wallenstein, M., Hofmockel, K., Klepeis, D. & Hahall, B. (2003). Ecology 84, 32223231.CrossRefGoogle Scholar
Smith, P.H. (2009). In 40th Lunar Planetary Science Conference, abstract no 1329.Google Scholar
Sunshine, J.M. & Pieters, C.M. (1993). J. Geophys. Res. 98, 90759087.CrossRefGoogle Scholar
Wagner, C. & Schade, U. (1996). Icarus 123(2), 256268.CrossRefGoogle Scholar
Wells, G.L., McFadden, L.D. & Dohrenwend, J.C. (1987). Quat. Res. 27(2), 130146.CrossRefGoogle Scholar
Wray, J.J., Murchie, S.L., Ehlmann, B.L., Milliken, R.E., Seelos, K.D., Noe Dobrea, E.Z., Mustard, J.F. & Squyres, S.W. (2011). In 42nd Lunar Planetary Science Conference, abstract no. 2635.Google Scholar
Zhang, P.-C., Anderson, H.L., Kelly, J.W., Krumhansl, J.L. & Papenguth, H.W. (2000). Sandia National Laboratory Report.Google Scholar
25
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Carbonate rocks in the Mojave Desert as an analogue for Martian carbonates
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Carbonate rocks in the Mojave Desert as an analogue for Martian carbonates
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Carbonate rocks in the Mojave Desert as an analogue for Martian carbonates
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *