Hostname: page-component-797576ffbb-bqjwj Total loading time: 0 Render date: 2023-12-04T16:04:46.727Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Effects of high-energy astrophysical events on habitable planets

Published online by Cambridge University Press:  10 August 2012

Jorge E. Horvath
Astrobiology Laboratory, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, R. do Matão 1226, Cidade Universitária, 05508-090 São Paulo, SP, Brazil
Douglas Galante*
Astrobiology Laboratory, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, R. do Matão 1226, Cidade Universitária, 05508-090 São Paulo, SP, Brazil


With the possible exception of meteor impacts, high-energy astrophysical events such as supernovae, gamma-ray bursts (GRB) and flares are usually not taken into account for biological and evolutionary studies due to their low rates of occurrence. We show that a class of these events may occur at distances and time scales in which their biological effects are non-negligible, maybe more frequent than the impacts of large asteroids. We review the effects of four transient astrophysical sources of ionizing radiation on biospheres – stellar flares, giant flares from soft gamma repeaters (SGR), supernovae and GRB. The main damaging features of them are briefly discussed and illustrated. We point out some open problems and ongoing work.

Research Article
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Alvarez, L.W., Alvarez, W., Asaro, F. & Michel, H.V. (1980). Science 208(4448), 10951108.Google Scholar
Annis, J. (1999). J. Br. Inter. Soc. 52, 1922.Google Scholar
Atkins, R. et al. (2000). Astrophys. J. 533(2), L119L122.Google Scholar
Atkins, R. et al. (2003). Astrophys. J. 583(2), 824832.Google Scholar
Atri, D. & Melott, A.L. (2011). Radiat. Phys. Chem.. 80, 701703.Google Scholar
Battista, J.R. (1997). Annu. Rev. Microbiol. 51, 203224.Google Scholar
Benitez, N., Maiz-Apellaniz, J. & Canelles, M. (2002). Phys. Rev. Lett. 88(8), 4.Google Scholar
Benz, A.O. & Güdel, M. (2010). Annu. Rev. Astron. Astrophys. 48, 241287.Google Scholar
Biermann, Peter L., Medina Tanco, G., Engel, R. & Pugliese, G. (2004). Astrophys. J. Lett. 604(1), L29L32.Google Scholar
Campbell, P., Hill, M., Howe, R., Kielkopf, J., Lewis, N., Mandaville, J., McWilliams, A., Moos, W., Samouce, D. & Winkler, J. (2005). GRB Coordinates Network 2932, 1.Google Scholar
Cliver, E.W. & Svalgaard, L. (2004). Sol. Phys. 224(1), 407422.Google Scholar
Cockell, C.S. (2000). Orig. Life Evol. Biosph. 30(5), 467499.Google Scholar
Crutzen, P.J. & Bruhl, C. (1996). Proc. Natl. Acad. Sci. U.S.A. 93(4), 15821584.Google Scholar
Dartnell, L.R. (2011). Astrobiology 11(6), 551582.Google Scholar
Dennis, B.R. (1985). Sol. Phys. 100(1), 465490.Google Scholar
Dessart, L., Hillier, D.J., Livne, E., Yoon, S.C., Woosley, S., Waldman, R. & Langer, N. (2011). Mon. Not. R. Astron. Soc. 414(4), 29853005.Google Scholar
Duncan, R.C. & Thompson, C. (1992). Astrophys. J. 392(1), L9L13.Google Scholar
Ellis, J. & Schramm, D.N. (1995). Proc. Natl. Acad. Sci. U.S.A. 92(1), 235238.Google Scholar
Galante, D. & Horvath, J.E. (2007). Int. J. Astrobiol. 6(1), 1926.Google Scholar
Gascón, J., Oubiña, A., Pérez-Lezaun, A. & Urmeneta, J. (1995). Curr. Microbiol. 30(3), 177182.Google Scholar
Gehrels, N., Laird, C.M., Jackman, C.H., Cannizzo, J.K., Mattson, B.J. & Chen, W. (2003). Astrophys. J. 585(2), 11691176.Google Scholar
Gosling, J.T. (1993). J. Geophys. Res. 98(A11), 1893718949.Google Scholar
Hurley, K. et al. (2005). Nature 434(7037), 10981103.Google Scholar
Ishkhanov, B.S., Yudin, N.P. & Eramzhyan, R.A. (2000). Phys. Part. Nuclei 31(2), 149169.Google Scholar
Martín, O., Galante, D., Cárdenas, R. & Horvath, J.E. (2009). Astrophys. Space Sci. 321, 161167.Google Scholar
Melott, A.L. (2006). Arxiv: astro-ph/0604440.Google Scholar
Melott, A.L. & Thomas, B.C. (2009). Paleobiology 35(3), 311320.Google Scholar
Melott, A.L. & Thomas, B.C. (2011). Astrobiology 11(4), 343361.Google Scholar
Melott, A.L., Lieberman, B.S., Laird, C.M., Martin, L.D., Medvedev, M.V., Thomas, B.C., Cannizzo, J.K., Gehrels, N. & Jackman, C.H. (2004). Int. J. Astrobiol. 3(01), 5561.Google Scholar
Penate, L., Martin, O., Cardenas, R. & Agusti, S. (2010). Astrophys. Space Sci. 330(2), 211217.Google Scholar
Perna, R. & Raymond, J. (2000). Astrophys. J. 539(2), 706711.Google Scholar
Perna, R., Raymond, J. & Loeb, A. (2000). Astrophys. J. 533(2), 658669.Google Scholar
Razzaque, S., Meszaros, P. & Zhang, B. (2004). Astrophys. J. 613(2), 10721078.Google Scholar
Ruderman, M.A. (1974). Science 184(4141), 10791081.Google Scholar
Scalo, J. & Wheeler, J.C. (2002). Astrophys. J. 566(2), 723737.Google Scholar
Scalo, J., Smith, D., Wheeler, J. (2003), American Astronomical Society, DPS Meeting #35, #19.11. Bull. Am. Astron. Soc. 35, 949.Google Scholar
Segura, A., Walkowicz, L.M., Meadows, V., Kasting, J. & Hawley, S. (2010). Astrobiology 10(7), 751771.Google Scholar
Shoemaker, E.M. (1983). Annu. Rev. Earth Planet. Sci. 11, 461494.Google Scholar
Smith, D.S. & Scalo, J. (2007). Planet. Space Sci. 55(4), 517527.Google Scholar
Smith, D., Scalo, J. & Wheeler, J.C. (2004). Orig. Life Evol. Biosph. 34(5), 513532.Google Scholar
Stanek, K.Z., Gnedin, O.Y., Beacom, J.F., Gould, A.P., Johnson, J.A., Kollmeier, J.A., Modjaz, M., Pinsonneault, M.H., Pogge, R. & Weinberg, D.H. (2006). Acta Astron. 56(4), 333345.Google Scholar
Stephens, D.L., Townsend, L.W. & Hoff, J.L. (2005). Acta Astron. 56(9–12), 969974.Google Scholar
Terasawa, T., Tanaka, Y.T., Takei, Y., Kawai, N., Yoshida, A., Nomoto, K., Yoshikawa, I., Saito, Y., Kasaba, Y. & Takashima, T. (2005). Nature 434(7037), 11101111.Google Scholar
Terry, K.D. & Tucker, W.H. (1968). Science 159(3813), 421.Google Scholar
Thomas, B.C., Jackman, C.H., Melott, A.L., Laird, C.M., Stolarski, R.S., Gehrels, N., Cannizzo, J.K. & Hogan, D.P. (2005a). Astrophys. J. 622(2), L153L156.Google Scholar
Thomas, B.C., Melott, A.L., Jackman, C.H., Laird, C.M., Medvedev, M.V., Stolarski, R.S., Gehrels, N., Cannizzo, J.K., Hogan, D.P. & Ejzak, L.M. (2005b). Astrophys. J. 634(1), 509533.Google Scholar
Thomas, B.C., Jackman, C.H. & Melott, A.L. (2007). Geophys. Res. Lett. 34(6), L06810.Google Scholar
Thorsett, S.E. (1995). Astrophys. J. 444(1), L53L55.Google Scholar
Townsend, L.W., Zapp, E.N., Stephens, D.L. & Hoff, J.L. (2003). IEEE Trans. Nucl. Sci. 50(6), 23072309.Google Scholar
Walkowicz, L.M., Basri, G., Batalha, N., Gilliland, R.L., Jenkins, J., Borucki, W.J., Koch, D., Caldwell, D., Dupree, A.K. & Latham, D.W. (2011). Astron. J. 141, 50.Google Scholar
Wilson, C.J.N. (2008). Elements 4(1), 2934.Google Scholar
Woods, P.M. & Thompson, C. (2006). Compact Stellar X-ray Sources. ed., Lewin, W.H.G. & Klis, M.v.d., Cambridge University Press, pp. 547586.Google Scholar
Woosley, S.E., Kerstein, A.R. & Aspden, A.J. (2011). Astrophys. J. 734(1): 37.Google Scholar