Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-5zjcf Total loading time: 1.144 Render date: 2022-08-08T11:11:27.821Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Experimental evidence for the global acidification of surface ocean at the Cretaceous–Palaeogene boundary: the biogenic calcite-poor spherule layers

Published online by Cambridge University Press:  17 July 2009

Pavle I. Premović
Affiliation:
Laboratory for Geochemistry, Cosmochemistry and Astrochemistry, University of Niš, 18 000Niš, Serbia e-mail: pavle.premovic@yahoo.com

Abstract

The massive amount of impact-generated atmospheric CO2 at the Cretaceous-Palaeogene boundary (KPB) would have accumulated globally in the surface ocean, leading to acidification and CaCO3 undersaturation. These chemical changes would have caused a crisis of biocalcification of calcareous plankton and enhanced dissolution of their shells; these factors together may have played a crucial role in forming the biogenic calcite-poor KPB spherule layers observed at numerous oceanic sites and marine (now on land) sites in Europe and Africa. Experimental data and observations indicate that the deposition spherule layer probably lasted only a few decades at most.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alegret, L., Arenillas, I., Arz, J.A. & Molina, E. (2002a). Environmental changes triggered by the K/T impact event at Coxquihui (Mexico) based on foraminifera. Neues Jahrb. Geol. P-M. 5, 295309.Google Scholar
Alegret, L., Arenillas, I., Arz, J.A., Liesa, C., Meléndez, A., Molina, E., Soria, A.R. & Thomas, E. (2002b). The Cretaceous/Tertiary boundary: sedimentology and micropaleontology at El Mulato section, NE Mexico. Terra Nova 14, 330336.CrossRefGoogle Scholar
Alegret, L. & Thomas, E. (2004). Benthic foraminifera and environmental turnover across the Cretaceous/Paleogene boundary at Blake Nose (ODP Hole 1049C, Northwestern Atlantic). Palaeogeogr. Palaeoecol. 208(1–2), 5983.CrossRefGoogle Scholar
Alegret, L., Kaminski, M.A. & Molina, E. (2004). Paleoenvironmental recovery after the Cretaceous/Paleogene boundary crisis: Evidence from the marine Bidart section (SW France). Palaios 19, 574586.2.0.CO;2>CrossRefGoogle Scholar
Alegret, L. & Thomas, E. (2005). Cretaceous/Paleogene boundary bathyal paleo-environments in the central north Pacific (DSDP Site 465), the northwestern Atlantic (ODP Site 1049), the Gulf of Mexico and the Tethys: the benthic Foraminiferal record. Palaeogeogr. Palaeoecol. 224, 5382.CrossRefGoogle Scholar
Alegret, L., Ortiz, S., Arenillas, I. & Molina, E. (2005). Paleoenvironmental turnover across the Paleocene/Eocene boundary at the Stratotype section in Dababiya (Egypt) based on benthic foraminifera. Terra Nova 17, 526536.CrossRefGoogle Scholar
Alegret, L. & Thomas, E. (2007). Deep-Sea environments across the Cretaceous/Paleogene boundary in the eastern South Atlantic Ocean (ODP Leg 208, Walvis Ridge). Mar. Micropaleontol. 64, 117.CrossRefGoogle Scholar
Alvarez, L.W., Alvarez, W., Asaro, F. & Michel, H.V. (1980). Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 10951108.CrossRefGoogle ScholarPubMed
Archer, D., Kheshgi, H. & Maier-Reimer, E. (1997). Multiple timescales for neutralization of fossil fuel CO2. Geophys. Res. Lett. 24, 405408.CrossRefGoogle Scholar
Arenillas, I., Arz, J.A., Molina, E. & Dupuis, C. (2000a). An independent test of planktic foraminiferal turnover across the Cretaceous/Paleogene (K/P) boundary et El Kef, Tunisia: Catastrophic mass extinction and possible survivorship. Micropaleontology 46(1), 3149.Google Scholar
Arenillas, I., Arz, J.A., Molina, E. & Dupuis, C. (2000b). The Cretaceous/Paleogene (K/P) boundary at Aïn Settara, Tunisia: sudden catastrophic mass extinction in planktic foraminifera. J. Foraminiferal. Res. 30(3), 202218.CrossRefGoogle Scholar
Arenillas, I., Alegret, L., Arz, J.A., Liesa, C., Meléndez, A., Molina, E., Soria, A.R., Cedillo-Pardo, E., Grajales-Nishimura, J.M. & Rosales-Domınguez, C. (2002). Cretaceous-Tertiary boundary planktic foraminiferal mass extinction and biochronology at La Ceiba and Bochil, Mexico, and El Kef, Tunisia. In Catastrophic events and mass extinctions: Impacts and beyond, eds Koeberl, C. & MacLeod, K.G., Geol. Soc. Am. Spec. Pap. 356, 253264.CrossRefGoogle Scholar
Arenillas, I., Arz, J.A. & Molina, E. (2004). A new high-resolution planktic foraminiferal zonation and subzonation for the lower Danian. Lethaia 17, 7995.CrossRefGoogle Scholar
Arenillas, I., Arz, J.A., Grajales-Nishimura, J.M., Murillo-Muñetón, G., Alvarez, W., Camargo-Zanoguera, A., Molina, E. & Rosales-Domínguez, C. (2006). Chicxulub impact event is Cretaceous/Paleogene boundary in age: New micropaleontological evidence. Earth Planet. Sci. Lett. 249, 241257.CrossRefGoogle Scholar
Arz, J.A., Alegret, L. & Arenillas, I. (2004). Foraminiferal biostratigraphy and paleoenvironmental reconstruction at Yaxcopoil-1 drill hole (Chicxulub crater, Yucatan Peninsula). Meteorit. Planet. Sci. 39, 10991111.CrossRefGoogle Scholar
Bailey, J.V., Cohen, A.S. & Kring, D.A. (2005). Lacustrine fossil preservation in acidic environments: implications of experimental and field studies for the Cretaceous-Paleogene boundary acid rain trauma. Palaios 20, 376389.CrossRefGoogle Scholar
Beerling, D.J., Lomax, B.H., Royer, D.L., Upchurch, G.R. Jr. & Kump, L.R. (2002). An atmospheric pCO2 reconstruction across the Cretaceous-Tertiary boundary from leaf megafossils. Proc. Nat. Ac. Sci., USA 99, 78367840.CrossRefGoogle ScholarPubMed
Blackford, J., Austen, M., Halloran, P., Iglesias-Rodriguez, D., Mayor, D., Pearce, D. & Turley, C. (2007). Modelling the response of marine ecosystems to increasing levels of CO2. A report to Defra arising from the Advances in Marine Ecosystem Modelling Research Workshop, Plymouth UK (Feb 12–14, 2007).Google Scholar
Bohor, B.F. & Betterton, W.J. (1989). Glauconite spherules and shocked quartz at the K-T boundary in DSDP Site 603 B. Twentieth Lunar and Planetary Science Abstracts: Houston, Texas, Lunar Planet. Sci. Conf. Texas 20(1), 9293.Google Scholar
Bralower, T.J., Premoli-Silva, I. & Malone, M.J. (2002). New evidence for abrupt climate change in the Cretaceous and Paleogene: An Ocean Drilling Program expedition to Shatsky Rise, northwest Pacific. Geol. Soc. Am. Today 12(11), 4–10.Google Scholar
Brett, R. (1992). The Cretaceous-Tertiary extinction: A lethal mechanism involving anhydrite target rocks. Geochim. Cosmochim. Acta 56, 36033606.CrossRefGoogle Scholar
Broecker, W.S. & Peng, T.H. (1982). Tracers in the Sea, Eldigio Press, Palisades, New York.Google Scholar
Caldeira, K.G. & Rampino, M.R. (1990). Deccan volcanism, greenhouse warming, and the Cretaceous/Tertiary boundary. Geol. Soc. Am. Spec. Publ. 247, 117123.Google Scholar
Caldeira, K.G. & Rampino, M.R. (1993). Aftermath of the end-Cretaceous mass extinction – possible biogeochemical stabilization of the carbon-cycle and climate. Paleoceanography 8, 515525.CrossRefGoogle Scholar
Caldeira, K.G. & Rau, G.H. (2000). Accelerating carbonate dissolution to sequester carbon dioxide in the ocean: Geochemical implications. Geophys. Res. Lett. 27, 225228.CrossRefGoogle Scholar
Caldeira, K. & Wickett, M. (2003). Anthropogenic carbon and ocean pH. Nature 425, 365.CrossRefGoogle ScholarPubMed
Coccioni, R. & Marsili, A. (2007). The response of benthic foraminifera to the K/Pg boundary biotic crisis at Elles (northwestern Tunisia). Palaeogeogr. Palaeoecol. 255(1–2), 157180.CrossRefGoogle Scholar
Cowie, J.W., Zieger, W. & Remane, J. (1989). Stratigraphic commission accelerates progress, 1984–1989. Episodes 12(2), 7983.Google Scholar
Crocket, J.H., Officer, C.B., Wezel, F.C. & Johnson, G.D. (1988). Distribution of noble metals across the Cretaceous/Tertiary boundary at Gubbio, Italy: Iridium variation as a constraint on the duration and nature of Cretaceous/Tertiary boundary events. Geology 16, 7780.2.3.CO;2>CrossRefGoogle Scholar
Culver, S.J. (2003). Benthic foraminifera across the Cretaceous–Tertiary (K–T) boundary: a review. Mar. Micropaleontol. 14, 177226.CrossRefGoogle Scholar
D'Hondt, S., Pilson, M.E.Q., Sigurdsson, H., Hanson, A.K. & Carey, S. (1994). Surface-water acidification and extinction at the Cretaceous-Tertiary boundary. Geology 22(11), 983986.2.3.CO;2>CrossRefGoogle Scholar
D'Hondt, S., Herbert, T.D., King, J. & Gibson, C. (1996). Planktic foraminifera, asteroids and marine production: Death and recovery at the Cretaceous-Tertiary boundary. In The Cretaceous-Tertiary Event and Other Catastrophes in Earth History, eds Ryder, G., Fastovsky, D. & Gartner, S., Geol. Soc. Am. Spec. Pap. 307, 303317.Google Scholar
D'Hondt, S. (2005). Consequences of the Cretaceous/Paleogene mass extinction for marine ecosystems. Ann. Rev. Ecol. Evol. System. 36, 295317.CrossRefGoogle Scholar
Díaz-Martínez, E., Sanz-Rubio, E. & Martínez-Frías, J. (2002). Sedimentary record of impact events in Spain. Geol. Soc. Am. Spec. Pap. 356, 551562.Google Scholar
Dupuis, C. et al. (2001). The Cretaceous-Palaeogene (K/P) boundary in the Äin Settara section (Kalaat Senana, Central Tunisia): litological, micropalaentological and geochemical evidence. Bull. Inst. Royal Sc. Natur. Belg. Sc. de la Terre 71, 169190.Google Scholar
Ekdale, A.A. & Bromley, R.G. (1984). Sedimentology and ichnology of the Cretaceous-Tertiary boundary in Denmark: Implications for the causes of the terminal Cretaceous extinction. J. Sed. Petrol. 54, 681703.Google Scholar
Elliott, W.C. (1993). Origin of the Mg-smectite at the Cretaceous/Tertiary (K/T) boundary at Stevns Klint, Denmark. Clays Clay Miner. 41, 442452.CrossRefGoogle Scholar
Emiliani, C., Kraus, E.B. & Shoemaker, E.M. (1981). Sudden death at the end of the Mesozoic. Earth Planet. Sci. Lett. 55, 317334.CrossRefGoogle Scholar
Erbacher, J., Mosher, D., Malone, M.J. & the ODP Leg 207 Scientific Party (2004). Drilling probes past carbon cycle perturbations on the Demerara rise. EOS 85(6), 5768.CrossRefGoogle Scholar
Fornaciari, E., Guisberti, L., Luciani, V., Tateo, F., Agnini, C., Backman, J., Oddone, M. & Rio, D. (2007). An expanded Cretaceous-Tertiary transition in a pelagic setting of the Southern Alps (central-western Tethys). Palaeogeogr. Palaeoecol. 225, 98–131.CrossRefGoogle Scholar
Fraiser, M.L. & Bottjer, D.J. (2007). Elevated atmospheric CO2 and the delayed biotic recovery from the end-Permian mass extinction. Palaeogeogr. Palaeoecol. 252, 164175.CrossRefGoogle Scholar
Galli, M.T., Jadoul, F., Bernasconi, S.M. & Weissert, H. (2005). Anomalies in global carbon cycling and extinction at the Triassic/Jurassic boundary: evidence from a marine C-isotope record. Palaeogeogr. Palaeoecol. 216, 203214.CrossRefGoogle Scholar
Gehlen, M., Gangstø, R., Schneider, B., Bopp, L., Aumont, O. & Ethe, C. (2007). The fate of pelagic CaCO3 production in a high CO2 ocean: a model study. Biogeosciences 4, 505519.CrossRefGoogle Scholar
Giblin, P. (1981). Mineralogy and geochemistry of the Cretceous/Tertiary boundary in Deep Sea Drilling Project Holes 465 and 465A. Init. Repts. Deep Sea Drill. Proj. 62, 851853.Google Scholar
Griscom, D.L. & Beltran-Lopez, V. (2002). ESR Spectra of limestones from the Cretaceous-Tertiary boundary: Traces of a catastrophe. Adv. ESR Appl. 18, 5764.Google Scholar
Guillemette, R.N. & Yancey, T.E. (2006). Microaccretionary and accretionary carbonate spherules of the Chicxulub impact event from Brazos River, Texas and Bass River, New Jersey. Lunar Planet. Sci. 37, 1779.Google Scholar
Haggerty, J., Sarti, M., von Rad, U., Ogg, J.G. & Dunn, D.A. (1986). Late Aptian to recent sedimentological history of the lower continental rise off New Jersey, Deep Sea Drilling Project Site 603. In Init. Repts DSDP 93, eds van Hinte, J.E. et al. , pp. 12851304. US Government Printing Office, Washington.Google Scholar
Hansen, H.J. (1990). Diachronous extinctions at the K/T boundary. Geol. Soc. Am. Spec. Pap. 247, 417423.Google Scholar
Hansen, H.J. (1991). Diachronous disappearance of marine and terrestrial biota at the Cretaceous-Tertiary boundary. Contr. Paleontol. Museum Univ. Oslo 364, 3132.Google Scholar
Hamilton, N. (1982). Cretaceous/Tertiary boundary studies at deep sea drilling project Site 516, Rio Grande Rise, South Atlantic: A synthesis. In Init. Repts DSDP 72, eds Barker, P.F., Carlson, R.L. & Johnson, D.A., pp. 949952. US Government Printing Office, Washington.Google Scholar
Hart, M.B., Fiest, S.E., Price, G.D. & Leng, M.J. (2004). Reappraisal of the K-T boundary succession at Stevns Klint, Denmark. J. Geol. Soc. 161, 885892.CrossRefGoogle Scholar
Hofmann, C., Feraud, G. & Courtillot, V. (2000). 40Ar/39 Ar dating of mineral separates and whole rocks from the Western Ghats lava pile: further constraints on duration and age of the Deccan traps. Earth Planet. Sci. Lett. 180, 1327.CrossRefGoogle Scholar
Hollis, C.J., Strong, C.P., Rodgers, K.A. & Rogers, K.M. (2003). Paleoenvironmental changes across the Cretaceous/Tertiary boundary at Flaxbourne River and Woodside Creek, eastern Marlborough. New Zealand. New Zeal. J. Geol. Geophys. 46, 177197.CrossRefGoogle Scholar
Hsü, K.J. et al. (1982). Mass mortality and its environmental and evolutionary consequences. Science 216, 249256.CrossRefGoogle ScholarPubMed
Hsü, K.J. & McKenzie, J. (1985). A strangelove ocean in the earliest Tertiary. In The carbon cycle and atmospheric CO2: natural variations from Archean to the present (American Geophysical Union, Monograph 32), eds Sundquist, E.T. & Broecker, W.S., pp. 487492.Google Scholar
Huber, B.T. (1991). Maastrichtian planktonic foraminifer biostratigraphy and the Cretaceous/Tertiary boundary at Hole 738C, Kerguelen Plateau (southern Indian Ocean). In Proc. Ocean Drill. Prog., Sci. Res., 119, eds Barron, J. et al. College Station, Texas, pp. 451465.Google Scholar
Huber, B.T. & MacLeod, K.G. (2000). Abrupt extinction and subsequent reworking of Cretaceous planktonic foraminifera across the K/T boundary: Evidence from the subtropical Atlantic. Catastrophic events and mass extinction: Impacts and beyond, Lunar Planet. Sci. Inst. Cont., pp. 7172.Google Scholar
Ingram, B.L. (1995). Ichthyolith strontium isotopic stratigraphy of deep-sea clays: Sites 885 and 886 (North Pacific transect). In Proc. Ocean Drill. Prog., Sci. Res., 145, eds Rea, D.K., Basov, L.A., Scholl, D.W. & Allan, J.F., pp. 399412.Google Scholar
Ivanov, B.A., Badjukov, O.I., Yakovlev, M.I., Gerasimov, M.V., Dikov, Y.P., Pope, K.O. & Ocampo, A.C. (1996). Degassing of sedimentary rocks due to Chicxulub impact: hydrocode and physical simulations. In The Cretaceous-Tertiary event and other catastrophes in Earth history, eds Ryder, G., Fastovsky, D. & Gartner, S., pp. 125139. Geol. Soc. Am.Google Scholar
Kaminski, M.A., Armitage, D.A., Jones, A.P. & Coccioni, R. (2008). Shocked diamonds in agglutinated foraminifera from the Cretaceous/Paleogene Boundary, Italy – a preliminary report. In Proc. 7th international workshop on agglutinated foraminifera, eds Kaminski, M.A. & Coccioni, R., Grzybowski Foundation Special Publication 13, 5761.Google Scholar
Keller, G., Li, L. & MacLeod, N. (1995). The Cretaceous/Tertiary boundary stratotype section at El Kef, Tunisia: how catastrophic was the mass extinctions? Palaeogeogr. Palaeoecol. 119, 221254.CrossRefGoogle Scholar
Keller, G., Stinnesbeck, W., Adatte, T. & Stüben, D. (2003). Multiple impacts across the Cretaceous-Tertiary boundary. Earth Sci. Rev. 62, 327363.CrossRefGoogle Scholar
Keller, G., Adatte, T., Berner, Z., Harting, M., Baum, G., Prauss, M., Tantawy, A. & Stueben, D. (2007). Chicxulub impact predates K–T boundary: New evidence from Brazos, Texas. Earth Planet. Sci. Lett. 255, 339356.CrossRefGoogle Scholar
Kiessling, W. & Claeys, P. (2001). A geographic database approach to the KT boundary. In Geological and biological effects of impact events, eds Buffetaut, E. & Koeberl, C., pp. 83–140. Springer, Berlin.Google Scholar
Klaver, G.T., van Kempen, T.M.G., Bianchi, F.R. & van der Gaast, S.J. (1987). Green spherules as indicators of the Cretaceous/Tertiary boundary in Deep Sea Drilling Project Hole 603B. In Init. Repts Deep Sea Drill. Proj. 93, eds van Hinte, J.E & Wise, S.W. Jr., pp. 10391056. US Government Printing Office, Washington, DC.Google Scholar
Kring, D.A. (2007). The Chicxulub impact event and its environmental consequences at the Cretaceous-Tertiary boundary. Palaeogeogr. Palaeoecol. 255, 1421.CrossRefGoogle Scholar
Kyte, F.T. & Wasson, J.T. (1985). Accretion rate of extraterrestrial matter: iridium deposited 33 to 67 million years ago. Science 232, 12251229.CrossRefGoogle ScholarPubMed
Kyte, F.T., Bostwick, J.A. & Zhou, L. (1994). The KT boundary on the Pacific Plate. Proc. Lunar Planet. Sci. 1994, 6465.Google Scholar
Kyte, F.T., Bostwick, J.A. & Zhou, L. (1995). Identification and characterization of the Cretaceous/Tertiary boundary at ODP Sites 886 and 803 and DSDP Site 576. Proc. Ocean Drill. Prog. Sci. Res. 145, 427434.Google Scholar
Kyte, F.T., Bostwick, J.A. & Zhou, L. (1996). The Cretaceous-Tertiary boundary on the Pacific plate: Composition and distribution of impact debris. Geol. Soc Am. Spec. Pap. 389401.Google Scholar
Lewis, J.S., Hampton Watkins, G., Hartman, H. & Prinn, R.G. (1982). Chemical consequences of major impact events on Earth. In Geological Implications of Impacts of Large Asteroids and Comets on the Earth, eds Silver, L.T. & Schultz, P.H., Geol. Soc Am. Spec. Pap. 190, 215221.CrossRefGoogle Scholar
Liu, Y-G. & Schmitt, R.A. (1996). Cretaceous-Tertiary phenomena in the context of seafloor rearrangements and p(CO2) fluctuations over the past 100 m.y. Geochim. Cosmochim. Acta 60, 973994.CrossRefGoogle Scholar
MacLeod, K.G., Whitney, D.L., Huber, B.T. & Koeberl, C. (2007). Impact and extinction in remarkably complete Cretaceous-Tertiary boundary sections from Demerara Rise, tropical western North Atlantic. Geol. Soc. Am. Bull. 119(1–2), 101115.CrossRefGoogle Scholar
Martinez-Ruiz, F., Ortega-Huertas, M., Kroon, D., Smit, J., Palomo, I. & Rocchia, R. (2001a). Geochemistry of the Cretaceous-Tertiary boundary at Blake Nose (ODP Leg 171B). Geol. Soc. London, Spec. Publ. 183(1), 131148.CrossRefGoogle Scholar
Martinez-Ruiz, F., Ortega-Huertas, M., Palomo, I. & Smit, J. (2001b). K/T boundary spherules from Blake Nose (ODP Leg 171B) as a record of the Chicxulub ejecta deposits. Geol. Soc. London, Spec. Publ. 183(1), 149161.CrossRefGoogle Scholar
Martínez-Ruiz, F., Ortega-Huertas, M. & Palomo, I. (2001c). Climate, tectonics and meteoritic impact expressed by clay mineral sedimentation across the Cretaceous-Tertiary boundary at Blake Nose, Northwestern Atlantic. Clays Clay Miner. 36(1), 4960.CrossRefGoogle Scholar
Martínez-Ruiz, F., Ortega-Huertas, M., Palomo, I. & Smit, J. (2002). Cretaceous–Tertiary boundary at Blake Nose (Ocean Drilling Program Leg 171B): a record of the Chicxulub impact ejecta. In Catastrophic Events and Mass Extinctions: Impacts and Beyond, eds Koeberl, C & MacLeod, K.G., Geol. Soc. Am. Spec. Pap. 356, 189199.CrossRefGoogle Scholar
Maruoka, T. & Koeberl, C. (2003). Acid-neutralizing scenario after the Cretaceous–Tertiary impact event. Geology 31, 489492.2.0.CO;2>CrossRefGoogle Scholar
Meyers, P.A. (1987). Synthesis of organic geochemical studies, DSDP Leg 93, North American continental margin. In Init. Rep. Deep Sea Drill. Proj., 93, eds van Hinte, J.E & Wise, S.W., pp. 13331342. Washington, D.C.Google Scholar
Michel, H.V., Asaro, F., Alvarez, W. & Alvarez, L.W. (1990). Geochemical studies of the Cretaceous-Tertiary boundary in ODP Holes 689B and 690C. In Proc. Ocean Drill. Prog., Sci. Res., 113, eds Barker, P.F & Kennett, J.P., pp. 159168. College Station, Texas.Google Scholar
Michel, H.V., Asaro, F. & Alvarez, W. (1991). Geochemical study of the Cretaceous-Tertiary boundary region at hole 752B. In Proc. Ocean Drill. Prog., Sci. Res. 121, eds Weissel, J., Peirce, J., Taylor, E & Alt, J., pp. 415422. College Station, Texas.Google Scholar
Milliman, J.D., Troy, P.J., Balch, W.M., Adams, A.K., Li, Y.H. & Mackenzie, F.T. (1999). Biologically mediated dissolution of calcium carbonate above the chemical lysocline? Deep Sea Res. Part I 46, 16531669.CrossRefGoogle Scholar
Minoletti, F., de Rafelis, M., Renard, M., Gardin, S. & Young, J.R. (2005). Changes in the pelagic fine fraction carbonate sedimentation during the Cretaceous–Paleocene transition: contribution of the separation technique to the study of the Bidart section. Palaeogeogr. Palaeoecol. 216, 119137.CrossRefGoogle Scholar
Molina, E., Arenillas, I. & Arz, J.A. (1998). Mass extinction in planktic foraminifera at the Cretaceous/Tertiary boundary in subtropical and temperate latitudes. Bull. Soc. Géol. France 169, 351363.Google Scholar
Molina, E., Alegret, L., Arenillas, I., Arz, J.A., Gallala, N., Hardenbol, J., von Salis, K., Steurbaut, E., Vandenberghe, N. & Zaghbib-Turki, D. (2006). The global stratotype section and point of the Danian stage (Paleocene, Paleogene, ‘Tertiary’, Cenozoic) at El Kef, Tunisia: original definition and revision. Episodes 29, 263278.Google Scholar
Montanari, A., Hay, R.L., Alvarez, W., Alvarez, L.W., Asaro, F., Michel, H.V. & Smit, J. (1983). Spheroids at the Cretaceous/Tertiary boundary are altered impact droplets of basaltic composition. Geology 11, 668671.2.0.CO;2>CrossRefGoogle Scholar
Montanari, A. & Koeberl, C. (2000). Impact Stratigraphy: The Italian Record. (Lecture Notes in Earth Sciences 9). Springer, Berlin.Google Scholar
Morgan, J., Lana, C., Kearsley, A., Coles, B., Belcher, C., Montanari, S., Díaz-Martínez, E., Barbosa, A. & Neumann, V. (2006). Analyses of shocked quartz at the global K-P boundary indicate an origin from a single, high-angle, oblique impact at Chicxulub. Earth Planet. Sci. Lett. 251, 264279.CrossRefGoogle Scholar
Mukhopadhyay, S., Farley, K.A. & Montanari, A. (2001). A short duration of the Cretaceous-Tertiary boundary event: Evidence from extraterrestrial helium-3. Science 291, 19521955.CrossRefGoogle Scholar
Nordt, L., Atchley, S. & Dworkin, S.I. (2002). Paleosol barometer indicates extreme fluctuations in atmospheric CO2 across the Cretaceous-Tertiary boundary. Geology 30, 703706.2.0.CO;2>CrossRefGoogle Scholar
Norris, R.D., Kroon, D. & Klaus, A. (1998). Initial reports, Ocean Drilling Program, Leg 171B, pp. 749. College Station, TX.Google Scholar
Norris, R.D., Huber, B.T. & Self-Trail, J. (1999). Synchroneity of the K-T oceanic mass extinction and meteorite impact: Blake Nose, western North Atlantic. Geology 27, 419422.2.3.CO;2>CrossRefGoogle Scholar
Norris, R.D., Firth, J., Blusztajn, J. & Ravizza, G. (2000). Mass failure of the North Atlantic margin triggered by the Creataceous-Paleogene bolide impact. Geology 28(12), 11191122.2.0.CO;2>CrossRefGoogle Scholar
Ocean Drilling Program Publication Services (www-odp.tamu.edu/publications/)Google Scholar
O'Keefe, J.D. & Ahrens, T.J. (1989). Impact production of CO2 by Cretaceous/Tertiary extinction bolide and the resultant heating of the Earth. Nature 338, 247249.CrossRefGoogle Scholar
Olsson, R.K., Miller, K.G., Browning, J.V., Habib, D. & Sugarman, P.J. (1997). Ejecta layer at the Cretaceous-Tertiary boundary, Bass River, New Jersey (Ocean Drilling Program Leg 174AX). Geology 25(8), 759762.2.3.CO;2>CrossRefGoogle Scholar
Ortega-Huertas, M., Martínez-Ruiz, F., Palomo, I. & Chamley, H. (1995). Comparative mineralogical and geochemical clay sedimentation in the Betic Cordilleras and Basque–Cantabrian Basin areas at the Cretaceous–Tertiary boundary. Sediment. Geol. 94, 209227.CrossRefGoogle Scholar
Ortega-Huertas, M., Palomo, I., Martinez, F. & Gonsalez, I. (1998). Geological factors controlling clay mineral patterns across the Cretaceous-Tertiary boundary in Mediterranean and Atlantic sections. Clays Clay Miner. 33, 483500.CrossRefGoogle Scholar
Ortega-Huertas, M., Martínez-Ruiz, F., Palomo-Delgado, I. & Chamley, H. (2002). Review of the mineralogy at the Cretaceous-Tertiary boundary clay: Evidence supporting a major extraterrestrial catastrophic event. Clays Clay Miner. 37, 395411.CrossRefGoogle Scholar
Petersen, N., Heller, F. & Lowrie, W. (1984). Magnetostratigraphy of the Cretaceous/Tertiary Geological Boundary. DSDP Reports and Publications 73, 657661.Google Scholar
Pierazzo, E., Kring, D.A. & Melosh, H.J. (1998). Hydrocode modelling of the Chicxulub impact event and the production of climatically active gases, J. Geophys. Res. 103, 2860728625.CrossRefGoogle Scholar
Pierazzo, E., Hahmann, A.N. & Sloan, L.C. (2003). Chicxulub and climate: Radiative perturbations of impact-produced S-bearing gases. Astrobiology 3, 99–118.CrossRefGoogle ScholarPubMed
Pollastro, R.M. & Bohor, B.F. (1993). Origin and clay-mineral genesis of the Cretaceous/Tertiary boundary unit, western interior of North America. Clays Clay Miner. 41, 7–25.CrossRefGoogle Scholar
Pope, K.O., Baines, K.H., Ocampo, A.C. & Ivanov, B.A. (1997). Energy, volatile production, and climatic effects of the Chicxulub Cretaceous/Tertiary impact. J. Geophys. Res. 102, 2164521664.CrossRefGoogle ScholarPubMed
Premović, P.I., Pavlović, N.Z, Pavlović, M.S. & Nikolić, N.D. (1993). Physicochemical conditions of sedimentation of the Fish Clay from Stevns Klint, Denmark and its nature: Vanadium and other supportive evidence. Geochim. Cosmochim. Acta 57, 14331446.CrossRefGoogle Scholar
Premović, P.I., Nikolić, N.D., Pavlović, M.S. & Panov, K.I. (2004). Geochemistry of the Cretaceous-Tertiary transition boundary at Blake Nose (N.W. Atlantic): Cosmogenic Ni. J. Serb. Chem. Soc. 69(3), 205223.CrossRefGoogle Scholar
Premović, P.I., Todorović, B.Ž. & Stanković, M.N. (2008). Cretaceous-Paleogene boundary (KPB) Fish Clay at Højerup (Stevns Klint, Denmark): Ni, Co and Zn of the black marl. Geol. Acta 6(4), 369382.Google Scholar
Premović, P.I. (2009). The conspicuous red impact layer of the Fish Clay at Höjerup (Stevns Klint, Denmark). Geochem. Int+ (Geokhimiya) 5, 543550.Google Scholar
Prinn, R.G. & Fegley, B. (1987). Bolide impacts, acid rain, and biospheric traumas at the Cretaceous-Tertiary boundary. Earth Planet. Sci. Lett. 83, 115.CrossRefGoogle Scholar
Rasmussen, J.A., Heinberg, C. & Håkanson, E. (2005). Planktonic forminifers, biostratigraphy and the diachronous nature of the lowermost Danian Cerithium Limestone at Stevns Klint, Denmark. Bull. Geol. Soc. Denmark 52, 113131.Google Scholar
Retalack, G.J. (2001). A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature 411, 287290.CrossRefGoogle Scholar
Robertson, D.S., Mckenna, M., Toon, O.B., Hope, S. & Lillegraven, J.A. (2004). Survival in the first hours of the Cenozoic. Geol. Soc. Am. Bull. 116, 760763.CrossRefGoogle Scholar
Robin, E., Boclet, D., Bonté, D., Froget, L., Jéhanno, C. & Rocchia, R. (1991). The stratigraphic distribution of Ni-rich spinels in Cretaceous-Tertiary boundary rocks at El Kef (Tunisia), Caravaca (Spain) and Hole 761 (Leg 122). Earth Planet. Sci. Lett. 107, 715721.CrossRefGoogle Scholar
Rocchia, R., Boclet, D., Bonté, P., Froget, L., Galbrun, B., Jéhanno, C. & Robin, E. (1992). Iridium and other element distributions, mineralogy, and magnetostratigraphy near the Cretaceous/Tertiary boundary in hole 761C. In Proc. Ocean Drill. Prog., Sci. Res. 122, eds von Rad, U. & Haq, B.U., pp. 753762. College Station, Texas.Google Scholar
Sanders, D. (2003). Syndepositional dissolution of calcium carbonate in neritic carbonate environments: geological recognition, processes, potential significance. J. Afr. Earth Sci. 36, 99–134.CrossRefGoogle Scholar
Schmitz, B. (1985). Metal precipitation in the Cretaceous-Tertiary boundary clay at Stevns Klint, Denmark. Geochim. Cosmochim. Acta 49, 23612370.CrossRefGoogle Scholar
Schmitz, B., Asaro, F., Michel, H.V., Thierstein, H.R. & Huber, B.T. (1991). Element stratigraphy across the Cretaceous/Tertiary boundary in hole 738C. Proc. Ocean Drill. Prog. Sci. Res. 119, 719730.Google Scholar
Schmitz, B., Keller, G. & Stenvall, O. (1992). Stable isotope changes across the Cretaceous-Tertiary Boundary at Stevns Klint, Denmark: arguments for long-term oceanic instability before and after bolide impact event. Palaeogeogr. Palaeoecol. 96, 233260.CrossRefGoogle Scholar
Schulte, P., Speijer, R.P., Mai, H. & Kontny, A. (2006). The Cretaceous-Paleogene (K-P) boundary at Brazos, Texas: Sequence stratigraphy, depositional events and the Chicxulub impact. Sediment. Geol. 184, 77–109.CrossRefGoogle Scholar
Schulte, P., Deutsch, A., Salge, T., Berndt, J., Kontny, A., MacLeod, K.G., Neuser, R.D. & Krumm, S. (2009). A dual-layer Chicxulub ejecta sequence with shocked carbonates from the Cretaceous–Paleogene (K–Pg) boundary, Demerara Rise, western Atlantic. Geochim. Cosmochim. Acta 73(4), 11801204.CrossRefGoogle Scholar
Seibel, B.A. & Walsh, P.J. (2001). Carbon cycle – Potential, impacts of CO2 injection on deep-sea biota. Science 294, 319320.CrossRefGoogle ScholarPubMed
Seibel, B.A. & Walsh, P.J. (2003). Biological impacts of deep-sea carbon dioxide injection inferred from indices of physiological performance. J. Exp. Biol. 206, 641650.CrossRefGoogle ScholarPubMed
Self, S., Thordarson, T. & Widdowson, M. (2005). Gas fluxes from flood basalt eruptions. Elements 1, 283287.CrossRefGoogle Scholar
Smit, J. (1982). Extinction and evolution of planktonic foraminifera after a major impact at the Cretaceous/Tertiary boundary. Geol. Soc. Am. Spec. Pap. 190, 329352.Google Scholar
Smit, J. & Romein, A.J.T. (1985). A sequence of events across the Cretaceous–Tertiary boundary. Earth Planet. Sci. Lett. 74, 155170.CrossRefGoogle Scholar
Smit, J. & van Kempen, T.M.G. (1986). Planktonic foraminifers from the Cretaceous/Tertiary boundary at Deep Sea Drilling Project site 605, North Atlantic. In Init. Rep. Deep Sea Drill. Proj., eds Van Hinte, J.E & Wise, W., pp. 549553. Government Printing Office 92, Washington, U.S.A.Google Scholar
Smit, J. (1999). The global stratigraphy of the Cretaceous Tertiary boundary impact ejecta. Ann. Rev. Earth Planet. Sci. 27, 75–113.CrossRefGoogle Scholar
Smit, J., Van Der Gaast, S. & Lustenhouwer, W. (2004). Is the transition impact to post-impact rock complete? Some remarks based on XRF scanning, electron microprobe and thin section analyses of the Yaxcopoil-1 core in the Chicxulub crater. Meteorit. Planet. Sci. 39, 11131126.CrossRefGoogle Scholar
Surlyk, F. (1997). A cool-water carbonate ramp with bryozoan mounds: Late Cretaceous–Danian of the Danish Basin. In Cool-Water Carbonates, eds James, N.P & Clarke, J.A.D., pp. 293307. SEPM Special Publications, Tulsa, Oklahoma.CrossRefGoogle Scholar
Sutherland, F.L. (1994). Volcanism around K/T boundary time – its role in an impact scenario for the K/T extinction events. Earth Sci. Rev. 36, 126.CrossRefGoogle Scholar
Strong, C.P., Brooks, R., Wilson, S., Reeves, R.D., Orth, C.J. & Mao, X.-Y. (1987). A new Cretaceous-Tertiary boundary site at Flaxbourne River, New Zealand: biostratigraphy and geochemistry. Geochim. Cosmochim. Acta 51, 27692777.CrossRefGoogle Scholar
Stüben, D., Kramar, U., Berner, Z., Stinnesbeck, W., Keller, G. & Adatte, T. (2002). Trace elements, stable isotopes and clay mineralogy of the K-T boundary section in Tunisia: indications for sea level fluctuations and primary productivity. Palaeogeogr. Palaeoecol. 178, 321345.CrossRefGoogle Scholar
Thierstein, H.R., Asaro, F., Ehrmann, W.U., Huber, B., Michel, H., Sakai, H. & Schmitz, B. (1991). The Cretaceous/Tertiary Boundary at Site 738, Southern Kerguelen Plateau. In Proc. Ocean Drill. Prog., Sci. Res. 119, eds Barron, J. Larsen et al. , pp. 849867. College Station, Texas.Google Scholar
Trinquier, A., Birck, J.L. & Alle'gre, C.J. (2006). The nature of the KT impactor. A 54Cr reappraisal. Earth Planet. Sci. Lett. 241, 780788.CrossRefGoogle Scholar
Twitchett, R.J. (2006). The palaeocimatology, palaeoecology and palaeoenvironmental analysis of mass extinction events. Palaeogeogr. Palaeoecol. 232, 190213.CrossRefGoogle Scholar
Weissert, H. & Erba, E. (2004). Volcanism, CO2 and palaeoclimate: a Late Jurassic-Early Cretaceous carbon and oxygen isotope record. J. Geol. Soc. 161, 695702 Part 4.CrossRefGoogle Scholar
Wendler, J. & Willems, H. (2002). The distribution pattern of calcareous dinoflagellate cysts at the Cretaceous/Tertiary boundary (Fish Clay, Stevns Klint, Denmark)-Implications for our understanding of species selective extinction. In Catastrophic Events and Mass Extinctions: Impact and Beyond, eds. Koeberl, C. & Macleod, K.G., Geol. Soc. Am. Spec. Pap. 356, 265277.Google Scholar
Wissler, L., Funk, H. & Weissert, H. (2003). Response of Early Cretaceous carbonate platforms to changes in atmospheric carbon dioxide levels, Palaeogeogr. Palaeoecol. 200, 187205.CrossRefGoogle Scholar
Zachos, J.C. et al. (2004). Proc. Ocean Drilling Program, Initial Reports, 208, pp. 1112. Ocean Drilling Program, College Station, Texas.Google Scholar
Zachos, J.C., et al. (2005). Rapid acidification of the Ocean during the Paleocene-Eocene Thermal Maximum. Science 308, 16111615.CrossRefGoogle ScholarPubMed
Zaghbib-Turki, D. & Karoui-Yaakoub, N. (2004). The Cretaceous-Tertiary (K-T) boundary in Elles and the other Tunisian outcrops. 32nd International Geological Congress, Florence, Italy, Field Trip Guide Book, P60, pp. 128.Google Scholar
Zahnle, K.J. (1990). Atmospheric chemistry by large impacts. In Global Catastrophes in Earth History; An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality, eds Sharpton, V.L. & Ward, P.D., Geol. Soc. Am. Spec. Pap. 247, 271288.CrossRefGoogle Scholar
Zhou, L., Kyte, F.T. & Bohor, B.F. (1991). Cretaceous/Tertiary boundary of DSDP Site 596, South Pacific. Geology 19(7), 694697.2.3.CO;2>CrossRefGoogle Scholar
5
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Experimental evidence for the global acidification of surface ocean at the Cretaceous–Palaeogene boundary: the biogenic calcite-poor spherule layers
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Experimental evidence for the global acidification of surface ocean at the Cretaceous–Palaeogene boundary: the biogenic calcite-poor spherule layers
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Experimental evidence for the global acidification of surface ocean at the Cretaceous–Palaeogene boundary: the biogenic calcite-poor spherule layers
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *