Hostname: page-component-788cddb947-kc5xb Total loading time: 0 Render date: 2024-10-10T01:33:27.516Z Has data issue: false hasContentIssue false

The habitable epoch of the early Universe

Published online by Cambridge University Press:  09 September 2014

Abraham Loeb*
Affiliation:
Astronomy Department, Harvard University, 60 Garden Street, Cambridge, MA 02138, USA

Abstract

In the redshift range 100≲(1+z)≲137, the cosmic microwave background (CMB) had a temperature of 273–373 K (0–100°C), allowing early rocky planets (if any existed) to have liquid water chemistry on their surface and be habitable, irrespective of their distance from a star. In the standard ΛCDM cosmology, the first star-forming halos within our Hubble volume started collapsing at these redshifts, allowing the chemistry of life to possibly begin when the Universe was merely 10–17 million years old. The possibility of life starting when the average matter density was a million times bigger than it is today is not in agreement with the anthropic explanation for the low value of the cosmological constant.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ade, P.A.R. et al. (2013a). Planck 2013 Results: XVI. Cosmological Parameters. Preprint, arXiv:1303.5076.Google Scholar
Ade, P.A.R. et al. (2013b). Planck 2013 Results: XXIV. Constraints on Primordial Non-Gaussianity. Preprint, arXiv:1303.5084.Google Scholar
Anderson, L. et al. (2014). The Clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 10 and 11 Galaxy Samples. Preprint, arXiv:1312.4877.Google Scholar
Bromm, V. & Larson, R. (2004). The first stars. Annu. Rev. Astron. Astrophys. 42, 79118.CrossRefGoogle Scholar
Bromm, V., Kudritzki, R.P. & Loeb, A. (2001). Generic spectrum and ionization efficiency of a heavy initial mass function for the first stars. Astrophys. J. 552, 464472.CrossRefGoogle Scholar
El Eid, M.F., Fricke, K.J. & Ober, W.W. (1983). Evolution of massive pregalactic stars. Astron. Astrophys. 119, 5460.Google Scholar
Fialkov, A., Barkana, R., Tseliakhovich, D. & Hirata, C.M. (2012). Impact of the relative motion between the dark matter and Baryons on the first stars: semi-analytical modelling. Mon. Not. R. Astron. Soc. 424, 13351345.CrossRefGoogle Scholar
Fixsen, D.J. (2009). The temperature of the cosmic microwave background. Astrophys. J. 707, 916920.Google Scholar
Garriga, J. & Vilenkin, A. (2006). Anthropic prediction for Λ and the Q catastrophe. Prog. Theoret. Phys. Suppl. 163, 245257.CrossRefGoogle Scholar
Haiman, Z., Thoul, A.A. & Loeb, A. (1996). Cosmological formation of low mass objects. Astrophys. J. 464, 523538.Google Scholar
Heger, A. & Woosley, S.E. (2002). The Nucleosynthetic signature of population III. Astrophys. J. 567, 532543.Google Scholar
Hirata, C.M. & Padmanabhan, N. (2006). Cosmological production of H2 before the formation of the first galaxies. Mon. Not. R. Astron. Soc. 372, 11751186.CrossRefGoogle Scholar
Kasting, J. (2010). How to Find a Habitable Planet. Princeton University Press, Princeton, NJ.Google Scholar
Kasting, J.F., Whitmire, D.P. & Reynolds, R.T. (1993). Habitable zones around main sequence stars. Icarus 101, 108128.Google Scholar
Loeb, A. (2006). An observational test for the anthropic origin of the cosmological constant. J. Cosmol. Astropart. Phys. 5, 914.Google Scholar
Loeb, A. & Furlanetto, S.R. (2012). The First Galaxies in the Universe. Princeton University Press, Princeton, NJ.Google Scholar
LoVerde, M. & Smith, K.M. (2011). The non-Gaussian mass function with f NL ,g NL and τ NL . J. Cosmol. Astropart. Phys. 8, 325.Google Scholar
Maio, U., Salvaterra, R., Moscardini, L. & Ciardi, B. (2012). Counts of high-redshift GRBs as probes of primordial non-Gaussianities. Mon. Not. R. Astron. Soc. 426, 20782088.CrossRefGoogle Scholar
Maldacena, J. (2003). Non-Gaussian features of primordial fluctuations in single field inflationary models. J. High Energy Phys. 5, 1331.Google Scholar
Marigo, P., Chiosi, C., Girardi, L. & Kudritzki, R. (2003). Evolution of zero-metallicity massive stars. Proc. IAU Symp. 212, 334340.Google Scholar
McNichol, J. & Gordon, R. (2012). Are we from outer space? A critical review of the panspermia hypothesis. In Genesis – In the Beginning: Precursors of Life, Chemical Models and Early Biological Evolution, ed. Seckbach, J., pp. 591620. Springer, Dordrecht.Google Scholar
Musso, M. & Sheth, R.K. (2013). The Excursion Set Approach in Non-Gaussian Random Fields. Preprint, arxiv:1305.0724.Google Scholar
Naoz, S., Noter, S. & Barkana, R. (2006). The first stars in the universe. Mon. Not. R. Astron. Soc. 373, L98L102.Google Scholar
Ober, W.W., El Eid, M.F. & Fricke, K.J. (1983). Evolution of pregalactic stars: II. Nucleosynthesis in pair creation supernovae and pregalactic enrichment. Astron. Astrophys. 119, 6168.Google Scholar
Pierrehumbert, R. & Gaidos, E. (2011). Hydrogen greenhouse planets beyond the habitable zone. Astrophys. J. 734, L13L18.Google Scholar
Pritchard, J.R. & Loeb, A. (2012). 21 cm cosmology in the 21st century. Rep. Prog.  Phys. 75, 131.Google Scholar
Shandera, S., Mantz, A., Rapetti, D. & Allen, S.W. (2013). X-ray cluster constraints on non-Gauissianity. J. Cosmol. AstroPart. Phys. 8, 429.Google Scholar
Sheth, R.K. & Tormen, G. (1999). Large-scale bias and the peak background split. Mon. Not. R. Astron. Soc. 308, 119126.Google Scholar
Stevenson, D.J. (1999). Life sustaining planets in interstellar space? Nature 400, 3233.Google Scholar
Tegmark, M., Silk, J., Rees, M.J., Blanchard, A., Abel, T. & Pella, F. (1997). How small were the first cosmological objects? Astrophys. J. 474, 112.Google Scholar
Tegmark, M., Aguirre, A., Rees, M.J. & Wilczek, F. (2006). Dimensionless constants, cosmology, and other dark matters. Phys. Rev. D 73, 128.Google Scholar
Tseliakhovich, D., Barkana, R. & Hirata, C.M. (2011). Suppression and spatial variation of early galaxies and minihalos. Mon. Not. R. Astron. Soc. 418, 906915.Google Scholar
Weinberg, S. (1987). Anthropic bound on the cosmological constant. Phys. Rev. Lett. 59, 26072610.Google Scholar