Hostname: page-component-546b4f848f-q5mmw Total loading time: 0 Render date: 2023-06-04T17:34:41.952Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

Life's chirality from prebiotic environments

Published online by Cambridge University Press:  02 October 2012

Marcelo Gleiser*
Affiliation:
Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755, USA
Sara Imari Walker
Affiliation:
NASA Astrobiology Institute, USA BEYOND: Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ 85287, USA

Abstract

A key open question in the study of life is the origin of biomolecular homochirality: almost every life-form on Earth has exclusively levorotary amino acids and dextrorotary sugars. Will the same handedness be preferred if life is found elsewhere? We review some of the pertinent literature and discuss recent results suggesting that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events. In one scenario, autocatalytic prebiotic reactions undergo stochastic fluctuations due to environmental disturbances, in a mechanism reminiscent of evolutionary punctuated equilibrium: short-lived destructive events may lead to long-term enantiomeric excess. In another, chiral-selective polymerization reaction rates influenced by environmental effects lead to substantial chiral excess even in the absence of autocatalysis. Applying these arguments to other potentially life-bearing platforms has implications to the search for extraterrestrial life: we predict that a statistically representative sampling of extraterrestrial stereochemistry will be racemic (chirally neutral) on average.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bada, J.L. (1997). Science 275, 942.CrossRefGoogle Scholar
Blackmond, D. (2004). Proc. Natl Acad. Sci. U.S.A. 101, 5732.CrossRefGoogle Scholar
Bonner, W.A. (1995). The quest for chirality. In Physical Origin of Homochirality in Life, ed. Cline, D., AIP Conference Proceedings 379, AIP Press, New York.Google Scholar
Brandenburg, A. & Multamäki, T. (2004). Int. J. Astrobiol. 3, 209.CrossRefGoogle Scholar
Brandenburg, A., Lehto, H.J. & Lehto, K.M. (2007). Astrobiology 7, 725.CrossRefGoogle Scholar
Bywater, R.P. & Conde-Frieboes, K. (2005). Astrobiology 5, 568.CrossRefGoogle Scholar
Cassan, A. et al. (2012). Nature 481, 167169; http://kepler.nasa.gov/CrossRefGoogle Scholar
Charnley, S.B., Rogers, S.D., Kuan, Y.-J. & Huang, H.-C. (2002). Adv. Space Res. 30, 1419.CrossRefGoogle Scholar
Chyba, C. & Sagan, C. (1992). Nature 355, 125.CrossRefGoogle Scholar
Cline, D.B. (ed.) (1995). Physical origin of homochirality in life. In AIP Conference Proceedings 379, AIP Press, New York.Google Scholar
Cohen, J. (1995). Science 267, 1265.CrossRefGoogle ScholarPubMed
Corliss, J.B., Baross, J.A. & Hoffman, S.E. (1981). Oceanol. Acta 4, 59.Google Scholar
Cronin, J.R. (1989). Adv. Space Res. 9, 59.CrossRefGoogle Scholar
Davies, P.C.W. & Lineweaver, C.H. (2005). Astrobiology 5, 154.CrossRefGoogle Scholar
Dunitz, J.D. (1996). Proc. Natl Acad. Sci. U.S.A. 93, 14260.CrossRefGoogle Scholar
Eldredge, N. & Gould, S.J. (1972). Punctuated equilibria: an alternative to phyletic gradualism. In Models in Paleobiology, ed. Schopf, T.J.M., Freeman Cooper, San Francisco, Ch. 5.Google Scholar
Fishkis, M. (2007). Orig. Life Evol. Biosph. 37, 537.CrossRefGoogle Scholar
Fitz, D., Reiner, H., Plakensteiner, K. & Rode, B. (2007). Curr. Chem. Biol. 1, 41.Google Scholar
Fox, S. (1973). Pure Appl. Chem 34, 641.CrossRefGoogle Scholar
Fox, S. (1995). J. Bio. Physics 20, 17.CrossRefGoogle Scholar
Frank, F. (1953). Biochim. Biophys. Acta 11, 459.CrossRefGoogle Scholar
Fraser, D.G., Fitz, D., Jakschitz, T., Rode, B.M. (2011). Phys. Chem. Chem. Phys. 13, 831.CrossRefGoogle Scholar
Gilbert, W. (1986). Nature 319, 618.CrossRefGoogle Scholar
Gleiser, M. & Thorarinson, J. (2006). Orig. Life Evol. Biosph. 36, 501.CrossRefGoogle Scholar
Gleiser, M. & Walker, S.I. (2008). Orig. Life Evol. Biosph. 38, 293.Google Scholar
Gleiser, M. & Walker, S.I. (2009). Orig. Life Evol. Biosph. 39, 479.CrossRefGoogle Scholar
Gleiser, M. (2012). Int. J. Astrobiol. 11, 345.Google Scholar
Gleiser, M., Nelson, B. & Walker, S.I. (2012). Chiral polymerization in open systems from chiral-selective reaction rates, Orig. Life Evol. Biosph 42, 333346.CrossRefGoogle ScholarPubMed
Gleiser, M. (2007). Orig. Life Evol. Biosph. 37, 235.CrossRefGoogle Scholar
Gleiser, M., Thorarinson, J. & Walker, S.I. (2008). Orig. Life Evol. Biosph. 38, 499508 [arXiv:0802.1446].CrossRefGoogle Scholar
Gould, S.J. (1991). Natural History, 100, 12.Google Scholar
Haken, M. (1983). Synergetics: An Introduction, Springer-Verlag, Berlin.CrossRefGoogle Scholar
Hochberg, D. & Zorzano, M.P. (2007). Phys. Rev. E 76, 0211109.CrossRefGoogle Scholar
Hochberg, D. (2009). Phys. Rev. Lett. 102, 248101.CrossRefGoogle Scholar
Hochberg, D. (2010) Phys. Rev. E 81, 016106.CrossRefGoogle Scholar
Joyce, G.F. et al. (1984). Nature 310, 602.CrossRefGoogle Scholar
Joyce, G.F. (1991). New Bio. 3, 399.Google Scholar
Kasting, J.F., Whitmire, D.P. & Reynolds, R.T. (1993). Icarus 101, 108.CrossRefGoogle Scholar
Kimura, M. (1968). Nature 217, 624.CrossRefGoogle Scholar
Kondepudi, D.K. & Asakura, K. (2001). Acc. Chem. Res. 34, 946.CrossRefGoogle Scholar
Kondepudi, D.K. & Nelson, G.W. (1985). Nature 314, 438441.CrossRefGoogle Scholar
Kondepudi, D.K. & Nelson, G.W. (1983). Phys. Rev. Lett. 50, 1023.CrossRefGoogle Scholar
Lahav, M. (2007). Orig. Life Evol. Biosph. 37, 371.CrossRefGoogle Scholar
Lazcano, A. & Miller, S.L. (1996). Cell 85, 793.CrossRefGoogle Scholar
Lineweaver, C.H. & Davis, T.M. (2002). Astrobiology 3, 293.CrossRefGoogle Scholar
Lineweaver, C.H. (2001). Icarus 151, 307.CrossRefGoogle Scholar
Lucas, P.W. et al. (2005). Orig. Life Evol. Biosph. 35, 29.CrossRefGoogle Scholar
Maher, K.A. & Stevenson, D.J. (1988). Nature 331, 612.CrossRefGoogle Scholar
Marcy, G. et al. (2005). Prog. Theor. Phys. Suppl. 158, 24.CrossRefGoogle Scholar
Miller, S.L. (1953). Science 117, 528.CrossRefGoogle Scholar
Monnard, P.A. & Deamer, D. (2002). Anatom. Rec. 268, 196.CrossRefGoogle Scholar
Monnard, P.A. (2007). Orig. Life Evol. Biosph. 37, 387.CrossRefGoogle Scholar
Morowitz, H.J., Heinz, B. & Deamer, D. (1988). Orig. Life Evol. Biosph 18, 281.CrossRefGoogle Scholar
Nielsen, P.E. (2007). Orig. Life Evol. Biosph. 37, 323.CrossRefGoogle Scholar
Nilsson, M. et al. (2005). Int. J. Astrobiol. 4, 233.CrossRefGoogle Scholar
Orgel, L.E. (1998a). Orig. Life Evol. Biosph. 28, 91.CrossRefGoogle Scholar
Orgel, L.E. (1998b). Trends Biochem. Sci. 23, 491.CrossRefGoogle Scholar
Orgel, L. (2000). Science 290, 1306.CrossRefGoogle Scholar
Pasteur, L. (1848). Ann. Chim. Phys. 24, 442.Google Scholar
Plasson, R. et al. (2007). Chirality 19, 589.CrossRefGoogle Scholar
Plasson, R., Bersini, H. & Commeyras, A. (2004). Proc. Natl Acad. Sci. U.S.A. 101, 16733.CrossRefGoogle Scholar
Ring, D., Wolman, Y., Friedmann, N. & Miller, S.L. (1972). Proc. Natl Acad. Sci. U.S.A. 69, 765.CrossRefGoogle Scholar
Robertson, M.P. & Miller, S.L. (1995). Nature 375, 772.CrossRefGoogle Scholar
Saito, Y. & Hyuga, H. (2005a). J. Phys. Soc. Japan 74, 535.CrossRefGoogle Scholar
Saito, Y. & Hyuga, H. (2005b). J. Phys. Soc. Japan 74, 1629.CrossRefGoogle Scholar
Salam, A. (1991). J. Mol. Evol. 33, 105.CrossRefGoogle Scholar
Sandars, P.G.H. (2003). Orig. Life Evol. Biosph. 33, 575.CrossRefGoogle Scholar
Satyanarayana, T., Raghukumar, C. & Shivaji, S. (2005). Curr. Sci. 89, 78.Google Scholar
Schopf, J.W. (1993a). Science 260, 640.CrossRefGoogle Scholar
Schopf, J.W. (1993b). The Earth's Earliest Biosphere: Its Origin and Evolution. Princeton University Press, Princeton, NJ.Google Scholar
Sleep, N.H. et al. (1989). Nature 342, 139.CrossRefGoogle Scholar
Soai, K., Shibata, T., Choji, K. & Morioka, H. (1995). Nature 378, 767.CrossRefGoogle Scholar
Trevors, J.T. (1997). Antonie van Leeuwenhoek 72, 251.CrossRefGoogle Scholar
van Zuilen, M.A., Lepland, A. & Arrhenius, G. (2002). Nature 420, 202.CrossRefGoogle Scholar
Viedma, C. (2005). Phys. Rev. Lett. 94, 065504.CrossRefGoogle Scholar
Wächtershäuser, G. (1992). Prog. Biophys. Mol. Biol. 58, 85.CrossRefGoogle Scholar
Wattis, J.A. & Coveney, P.V. (2005). Orig. Life Evol. Biosph. 35, 243.CrossRefGoogle Scholar
Welsh, C.J. & Lunine, J.I. (2001). Enantiomer 6, 6981.Google Scholar
Wilde, S.A., Valley, J.W., Peck, W.H. & Graham, C.M. (2005). Nature 409, 175.CrossRefGoogle Scholar
Wolman, Y., Haverland, H. & Miller, S.L. (1972). Proc. Natl Acad. Sci. U.S.A. 69, 809.CrossRefGoogle Scholar
Yamagata, Y. (1966). J. Theoret. Biol. 11, 495498.CrossRefGoogle Scholar