Hostname: page-component-797576ffbb-xg4rj Total loading time: 0 Render date: 2023-12-01T18:09:30.144Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Longevity of moons around habitable planets

Published online by Cambridge University Press:  30 June 2014

Takashi Sasaki*
Affiliation:
Department of Physics, University of Idaho, Moscow, ID 83844-0903, USA
Jason W. Barnes
Affiliation:
Department of Physics, University of Idaho, Moscow, ID 83844-0903, USA

Abstract

We consider tidal decay lifetimes for moons orbiting habitable extrasolar planets using the constant Q approach for tidal evolution theory. Large moons stabilize planetary obliquity in some cases, and it has been suggested that large moons are necessary for the evolution of complex life. We find that the Moon in the Sun–Earth system must have had an initial orbital period of not slower than 20 h rev−1 for the moon's lifetime to exceed a 5 Gyr lifetime. We assume that 5 Gyr is long enough for life on planets to evolve complex life. We show that moons of habitable planets cannot survive for more than 5 Gyr if the stellar mass is less than 0.55 and 0.42 M for Qp=10 and 100, respectively, where Qp is the planetary tidal dissipation quality factor. Kepler-62e and f are of particular interest because they are two actually known rocky planets in the habitable zone. Kepler-62e would need to be made of iron and have Qp=100 for its hypothetical moon to live for longer than 5 Gyr. A hypothetical moon of Kepler-62f, by contrast, may have a lifetime greater than 5 Gyr under several scenarios, and particularly for Qp=100.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, J.W. & O'Brien, D.P. (2002). Astrophys. J. 575, 1087.Google Scholar
Bills, B.G., Neumann, G.A., Smith, D.E. & Zuber, M.T. (2005). J. Geophys. Res. (Planets) 110, 7004.Google Scholar
Borucki, W.J. et al. (2013). Science 340, 587.Google Scholar
Canup, R.M. (2012). Science 338, 1052.Google Scholar
Canup, R.M. & Asphaug, E. (2001). Nature 412, 708.Google Scholar
Counselman, C.C. III (1973). Astrophys. J. 180, 307.Google Scholar
Ćuk, M. & Stewart, S.T. (2012). Science 338, 1047.Google Scholar
de Pater, I. & Lissauer, J.J. (2001). Planetary Sciences. Cambridge University Press, Cambridge, MA. ISBN 0521482194.Google Scholar
Dobrovolskis, A.R. (2013). Icarus 226, 760.Google Scholar
Dole, S.H. (1964). Habitable planets for man. Blaisdell Publishing Company.Google Scholar
Domingos, R.C., Winter, O.C. & Yokoyama, T. (2006). Mon. Not. R. Astron. Soc. 373, 1227.Google Scholar
Egbert, G.D. & Ray, R.D. (2000). Nature 405, 775.Google Scholar
Fortney, J.J., Marley, M.S. & Barnes, J.W. (2007). Astrophys. J. 659, 1661.Google Scholar
Goldreich, P. & Soter, S. (1966). Icarus 5, 375.Google Scholar
Goldreich, P. & Nicholson, P.D. (1977). Icarus 30, 301.Google Scholar
Hansen, C.J. & Kawaler, S.D. (1994). Stellar Interiors. Physical Principles, Structure, and Evolution. Springer-Verlag.Google Scholar
Hart, M.H. (1979). Icarus 37, 351.Google Scholar
Hubbard, W.B. (1974). Icarus 23, 42.Google Scholar
Joshi, M.M. & Haberle, R.M. (2012). Astrobiology 12, 3.Google Scholar
Kopparapu, R.K., Ramirez, R., Kasting, J.F., Eymet, V., Robinson, T.D., Mahadevan, S., Terrien, R.C., Domagal-Goldman, S., Meadows, V. & Deshpande, R. (2013). Astrophys. J. 765, 131.Google Scholar
Lambeck, K. (1980). The earth's variation: geophysical causes and consequences. Cambridge University Press.Google Scholar
Laskar, J. & Robutel, P. (1993). Nature 361, 608.Google Scholar
Laskar, J., Joutel, F. & Robutel, P. (1993). Nature 361, 615.Google Scholar
Lissauer, J.J., Barnes, J.W. & Chambers, J.E. (2012). Icarus 217, 77.Google Scholar
Lourens, L.J., Wehausen, R. & Brumsack, H.J. (2001). Nature 409, 1029.Google Scholar
Moore, W.B. & Schubert, G. (2000). Icarus 147, 317.Google Scholar
Munk, W.H. & MacDonald, G.J.F. (1960). The rotation of the earth; a geophysical discussion. Cambridge University Press.Google Scholar
Murray, C.D. & Dermott, S.F. (2000). Solar System Dynamics. Cambridge University Press, NY.Google Scholar
Ogilvie, G.I. & Lin, D.N.C. (2004). Astrophys. J. 610, 477.Google Scholar
Ogilvie, G.I. & Lin, D.N.C. (2007). Astrophys. J. 661, 1180.Google Scholar
Pahlevan, K. & Stevenson, D.J. (2007). Earth Planet. Sci. Lett. 262, 438.Google Scholar
Ray, R.D., Eanes, R.J. & Lemoine, F.G. (2001). Geophys. J. Int. 144, 471.Google Scholar
Sagan, C. & Dermott, S.F. (1982). Nature 300, 731.Google Scholar
Sasaki, T., Barnes, J.W. & O'Brien, D.P. (2012). Astrophys. J. 754, 51.Google Scholar
Shields, A.L., Meadows, V.S., Bitz, C.M., Pierrehumbert, R.T., Joshi, M.M. & Robinson, T.D. (2013). Astrobiology 13, 715.Google Scholar
Stevenson, D.J. (1987). Ann. Rev. Earth Planet. Sci. 15, 271.Google Scholar
Ward, W.R. & Reid, M.J. (1973). Mon. Not. R. Astron. Soc. 164, 21.Google Scholar
Ward, P. & Brownlee, D. (2000). Rare Earth: Why Complex Life is Uncommon in the Universe. Copernicus, NY.Google Scholar
Wiechert, U., Halliday, A.N., Lee, D.-C., Snyder, G.A., Taylor, L.A. & Rumble, D. (2001). Science 294, 345.Google Scholar
Williams, D.M. & Kasting, J.F. (1997). Icarus 129, 254.Google Scholar