Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-v9xhf Total loading time: 0.514 Render date: 2022-05-22T13:46:35.564Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Organic host analogues and the search for life on Mars

Published online by Cambridge University Press:  19 August 2010

Jeffrey J. Marlow
Affiliation:
Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
Zita Martins
Affiliation:
Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
Mark A. Sephton*
Affiliation:
Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, UK

Abstract

Mars analogue sites represent vital tools in our continued study of the Red Planet; the similar physico-chemical processes that shape a given analogue environment on Earth allow researchers to both prepare for known Martian conditions and uncover presently unknown relationships. This review of organic host analogues – sites on Earth that mimic the putatively low organic content of Mars – examines specific locations that present particular Mars-like obstacles to biological processes. Low temperatures, aridity, high radiation and oxidizing soils characterise modern-day Mars, while acid–saline waters would have presented their own challenges during the planet's warmer and wetter past. By studying each of these hurdles to life on Earth, scientists can prepare instruments headed for Mars and identify the best locations and approaches with which to look for biological signatures. As our use of organic host analogues becomes increasingly sophisticated, researchers will work to identify terrestrial sites exhibiting multiple Mars-like conditions that are tailored to the distinct mineralogical and physical characteristics of Martian locations. Making use of organic host analogues in these ways will enhance the search for signs of past or present life on Mars.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abyzov, S.S., Mitskevich, I.N. & Poglazova, M.N. (1998). Microbiology 67, 451458.Google Scholar
Acasco, C. & Wierzchos, J. (2002). Int. Microbiol. 5, 215222.Google Scholar
Aguilera, A. & Amils, R. (2004). ESA SP 545, 163164.Google Scholar
Amaral Zettler, L.A., Gomez, F., Zettler, E., Keenan, B.G., Amils, R. & Sogin, M.L. (2002). Nature 417, 137–137.CrossRefGoogle Scholar
Amashukeli, X., Pelletier, C.C., Kirby, J.P. & Grunthaner, F.J. (2007). J. Geophys. Res. 112, G04S16.CrossRefGoogle Scholar
Arvidson, R.E. (2007). Origin and evolution of the layered sulfate-rich rocks in Meridiani Planum, Mars. American Geophysical Union 2007 Fall Meeting, P21C-03.Google Scholar
Arvidson, R.E. et al. (2005). Science 307, 15911594.CrossRefGoogle Scholar
Aubrey, A., Cleaves, H.J., Chalmers, J.H., Skelley, A.M., Mathies, R.A., Grunthaner, F.J., Ehrenfreund, P. & Bada, J.L. (2006). Geology 34, 357360.CrossRefGoogle Scholar
Bada, J.L. et al. (2007). Space Sci. Rev. 135, 269279.CrossRefGoogle Scholar
Bada, J.L., Glavin, D.P., McDonald, G.D. & Becker, L. (1998). Science 279, 362365.CrossRefGoogle Scholar
Baker, V.R. (2001). Nature 412, 228236.CrossRefGoogle Scholar
Baker, V.R., Strom, R.G., Gulick, V.C., Kargel, J.S., Komatsu, G. & Kale, V.S. (1991). Nature 352, 589594.CrossRefGoogle Scholar
Baldridge, A. et al. (2008). Using Australian acidic playa lakes as analogs for phyllosilicate and sulfate depositional environments on Mars. American Geophysical Union 2008 Fall Meeting, P44A-06.Google Scholar
Baumstark-Khan, C. & Facius, R. (2001). Life under conditions of ionizing radiation. In Astrobiology: The Quest for the Conditions of Life, ed. Horneck, G. & Baumstark-Kahns, C., pp. 260283. Springer, New York.Google Scholar
Becker, L., Glavin, D.P. & Bada, J.L. (1997). Geochim. Cosmochim Acta 61, 475481.CrossRefGoogle Scholar
Benison, K.C. & Bowen, B.B. (2006). Icarus 183, 225229.CrossRefGoogle Scholar
Bertelsen, P. et al. (2004). Science 305, 827829.CrossRefGoogle Scholar
Bibring, J.-P. et al. (2005). Science 307, 15761581.CrossRefGoogle Scholar
Bibring, J.P. et al. (2006). Science 312, 400404.CrossRefGoogle Scholar
Biemann, K. et al. (1977). J. Geophys. Res. 82, 46414658.CrossRefGoogle Scholar
Billi, D. & Potts, M. (2002). Res. Microbiol. 153, 7–12.CrossRefGoogle Scholar
Birur, G., Pauken, M. & Novak, K. (2002). Thermal control of Mars rovers and landers using mini loop heat pipes. in Proc. 12th International Heat Pipe Conf.Google Scholar
Blackhurst, R., Genge, M., Kearsley, A. & Grady, M. (2005). J. Geophys. Res. 110, E12S24.CrossRefGoogle Scholar
Blackhurst, R., Jarvis, K. & Grady, M. (2004). Int. J. Astrobiol. 3, 97–106.CrossRefGoogle Scholar
Bonaccorsi, R. & McKay, C.P. (2008). Total biomass and organics along a N-S moisture gradient of the Atacama region, Chile. In Proc. Lunar and Planetary Science Conf. XXXIX, p. 1489.Google Scholar
Botta, O., Fristad, K., Mahaffy, P., Eigenbrode, J. & Steele, A. (2007). Dolomite sample from Svalbard, Norway, analyzed using the pyrolysis protocol of the SAM Instrument. In Proc. Lunar and Planetary Science Conf. XXXVIII, p. 1466.Google Scholar
Botta, O., Martins, Z., Emmenegger, C., Dworkin, J., Glavin, D., Harvey, R., Zenobi, R., Bada, J. & Ehrenfreund, P. (2008). Meteoritics Planet. Sci. 43, 14651480.CrossRefGoogle Scholar
Bowen, B.B., Benison, K.C., Oboh-Ikuenobe, F.E., Story, S. & Mormile, M.R. (2008). Earth Planet. Sci. Lett. 268, 5263.CrossRefGoogle Scholar
Broecker, W. & Liu, T. (2001). Geol. Today 11, 4–10.2.0.CO;2>CrossRefGoogle Scholar
Bryant, E. & Rech, S. (2008). Astrobiology 8, 427.CrossRefGoogle Scholar
Bullock, M.A., Stoker, C.R., McKay, C.P. & Zent, A.P. (1994). Icarus 107, 142154.CrossRefGoogle Scholar
Burt, D.M. (1981). Econ. Geol. 76, 832843.CrossRefGoogle Scholar
Byrne, S. et al. (2009). Science 325, 16741676.CrossRefGoogle Scholar
Byrnes, J., Finnegan, D., Anderson, S. & Ramsey, M. (2006). Analyses of Amboy Crater, Mojave Desert, California, as an Analog for Small Martian Volcanoes. In Proc. Lunar and Planetary Science Conf. XXXVII, p. 1205.Google Scholar
Cabane, M. et al. (2004). Adv. Space Res. 33, 22402245.CrossRefGoogle Scholar
Carpenter, E.J., Lin, S. & Capone, D.G. (2000). Appl. Environ. Microbiol. 66, 45144517.CrossRefGoogle Scholar
Carr, M.H. (1996). Water on Mars. Oxford University Press, Oxford.Google Scholar
Christensen, P.R. (2003). Nature 422, 4548.CrossRefGoogle Scholar
Christensen, P.R. et al. (2004). Science 306, 17331739.CrossRefGoogle Scholar
Christie, D.M., Carmichael, I.S.E. & Langmuir, C.H. (1986). Earth Planet. Sci. Lett. 79, 397411.CrossRefGoogle Scholar
Chun, S.F.S., Pang, K.D., Cutts, J.A. & Ajello, J.M. (1978). Nature 274, 875876.CrossRefGoogle Scholar
Clark, B.C. et al. (2005). Earth Planet. Sci. Lett. 240, 7394.CrossRefGoogle Scholar
Clarke, J.D.A., Bone, Y. & James, N.P. (1996). Sediment. Geol. 101, 213226.CrossRefGoogle Scholar
Clemmett, S., Dulay, M., Gilette, J., Chillier, X., Mahajan, T. & Zare, R. (1998). Faraday Discussions 109, 417436.CrossRefGoogle Scholar
Clifford, S.M. & Parker, T.J. (2001). Icarus 154, 4079.CrossRefGoogle Scholar
Cockell, C.S. & Raven, J.A. (2004). Icarus 169, 300310.CrossRefGoogle Scholar
Cockell, C.S., Schuerger, A.C., Billi, D., Friedmann, E.I. & Panitz, C. (2005). Astrobiology 5, 127140.CrossRefGoogle Scholar
Cox, M. & Battista, J. (2005). Nat. Rev. Microbiol. 3, 882892.CrossRefGoogle Scholar
Crowe, J.H., Crowe, L.M., Oliver, A.E., Tsvetkova, N., Wolkers, W. & Tablin, F. (2001). Cryobiology 43, 89–105.CrossRefGoogle Scholar
Dartnell, L.R., Desorgher, L., Ward, J.M. & Coates, A.J. (2007). Geophys. Res. Lett. 34, L02207.CrossRefGoogle Scholar
Davila, A.F. et al. (2008). Earth Planet. Sci. Lett. 272, 456463.CrossRefGoogle Scholar
de Broekert, P. & Sandiford, M. (2005). J. Geol. 113, 471493.CrossRefGoogle Scholar
Deming, J. & Eicken, H. (2007). Life in Ice. In Planets and Life, ed. Sullivan, W.T. & Barosss, J.A., pp. 292312. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Deming, J.W. (2002). Curr. Opin. Microbiol. 5, 301309.CrossRefGoogle Scholar
DiGregorio, B.E. (2002). SPIE Proc. 4495, 120130.CrossRefGoogle Scholar
Dorn, R. (1998). Rock coatings. In Developments in Earth Science Processes, Elsevier, Amsterdam.Google Scholar
Dorn, R. & Oberlander, T. (1981). Science 213, 12451247.CrossRefGoogle Scholar
Edwards, H.G., Russell, N.C. & Wynn-Williams, D.D. (1997). J. Raman Spectros. 28, 685690.3.0.CO;2-X>CrossRefGoogle Scholar
Ericksen, G.E. (1983). Am. Sci. 71, 366374.Google Scholar
Farrah, H. & Pickering, W.F. (1979). Chem. Geol. 25, 317326.CrossRefGoogle Scholar
Feldman, W.C. et al. (2002). Science 297, 7578.CrossRefGoogle Scholar
Fernández-Remolar, D.C., Morris, R.V., Gruener, J.E., Amils, R. & Knoll, A.H. (2005). Earth Planet. Sci. Lett. 240, 149167.CrossRefGoogle Scholar
Fernandez-Remolar, D.C., Rodriguez, N., Gomez, F. & Amils, R. (2003). J. Geophys. Res. 108, 5080.CrossRefGoogle Scholar
Fetzer, S. & Conrad, R. (1993). Arch. Microbiol. 160, 108113.CrossRefGoogle Scholar
Fike, D.A., Cockell, C.S., Pearce, D. & Lee, P. (2003). Int. J. Astrobiol. 1, 311323.CrossRefGoogle Scholar
Friedmann, E.I. (1982). Science 215, 10451053.CrossRefGoogle Scholar
Friedmann, E.I., Hua, M. & Ocampo-Friedmann, R. (1988). Polarforschung 58, 251259.Google Scholar
Friedmann, E.I., Rivkina, E.M., McKay, C.P. & Gilichinsky, D.A. (1999). Microbial growth rates in permafrost down to −20°C. In ISSOL '99, July 1–16, 1999, San Diego, Abstract cB2.6, p. 47.Google Scholar
Freidmann, E.I. & Weed, R. (1987). Science 236, 645752.Google Scholar
Galinski, E.A. (1995). Adv. Microb. Physiol. 27, 272328.Google Scholar
Gendrin, A. et al. (2005). Science 307, 15871591.CrossRefGoogle Scholar
Gilichinsky, D., Rivkina, E., Shcherbakova, V., Laurinavichuis, K. & Tiedje, J. (2003). Astrobiology 3, 331341.CrossRefGoogle ScholarPubMed
Glasby, G., McPherson, J., Kohn, B., Johnston, J., Keys, J., Freeman, A. & Tricker, M. (1981). J Geol. Geophys. 24, 389397.Google Scholar
Glavin, D., Dworkin, J., Aubrey, A., Botta, O., Doty, J. III, Martins, Z. & Bada, J. (2006). Meteoritics Planet. Sci. 41, 889902.CrossRefGoogle Scholar
Golombek, M., Grant, J., Crumpler, L., Greeley, R., Arvidson, R. & the Athena Science Team. (2005). Climate change from the Mars Exploration Rover landing sites: From wet in the Noachian to dry and desiccating since the Hesperian. In Proc. Lunar and Planetary Science Conf. XXXVI, p. 1539.Google Scholar
Greeley, R., Bridges, N., Kuzmin, R. & Laity, J. (2002). J. Geophys. Res. 107, 5005.CrossRefGoogle Scholar
Grima, C., Kofman, W., Mouginot, J., Herique, A., Biccari, D. & Seu, R. (2008). Dielectric Mapping of bulk polar ices of Mars with SHARAD radar data. American Geophysical Union 2008 Fall Meeting, P41B-1372.Google Scholar
Grimm, R., Stillman, D. & Dec, S. (2007). Abundance and Electrical Properties of Interfacial Water in the Martian Regolith. In Proc. Lunar and Planetary Science Conf. XXXVIII, p. 2249.Google Scholar
Grotzinger, J.P. et al. (2005). Earth Planet. Sci. Lett. 240, 1172.CrossRefGoogle Scholar
Hand, K., Carlson, R., Sun, H., Anderson, M., Wynn, W. & Levy, R. (2005). Waves of the future (for Mars): in-situ mid-infrared, near-infrared, and visible spectroscopic analysis of Antarctic cryptoendolithic communities. American Geophysical Union 2005 Fall Meeting, p. P51D–0959.Google Scholar
Hecht, M.H. et al. (2009). Science 325, 6467.CrossRefGoogle Scholar
Herborg, L.M., Thomas, D.N., Kennedy, H., Haas, C. & Dieckmann, G.S. (2001). Antarct. Sci. 13, 119125.CrossRefGoogle Scholar
Hong, B., Christiansen, J.M., Oboh-Ikuenobe, F.E., Bowen, B.B., Benison, K.C. & Mormile, M.R. (2006). Microbial diversity found in the acid saline lakes of Australia. Abstracts, American Society for Microbiology 106th General Meeting, p. 388.Google Scholar
Horneck, G. (2000). Planet. Space Sci. 48, 10531063.CrossRefGoogle Scholar
Horowitz, N.H., Hobby, G.L. & Hubbard, J.S. (1977). J. Geophys. Res. 82, 46594662.CrossRefGoogle Scholar
Hughes, K.A. & Lawley, B. (2003). Environ. Microbiol. 5, 555565.CrossRefGoogle Scholar
Hunten, D.M. (1979). J. Mol. Evol. 14, 7178.CrossRefGoogle Scholar
Hviid, S.F. et al. (1997). Science 278, 17681770.CrossRefGoogle Scholar
Hynek, B.M. & Phillips, R.J. (2008). Earth Planet. Sci. Lett. 274, 214220.CrossRefGoogle Scholar
Ivanov, M., Korteniemi, J., Kostama, V., Aittola, M., Raitala, J., Glamoclija, M., Marinangeli, L. & Neukum, G. (2005). J. Geophys. Res. 110, E12S21.CrossRefGoogle Scholar
Jakosky, B., Nealson, K., Bakermans, C., Ley, R. & Mellon, M. (2003). Astrobiology 3, 343350.CrossRefGoogle Scholar
Johnson, B. (1998). FEMS Microbiol. Ecol. 27, 307317.CrossRefGoogle Scholar
Jorge-Villar, S., Benning, L., Edwards, H. & the AMASE, team. (2007). Geochem. Trans. 8, 8.CrossRefGoogle Scholar
Jorge-Villar, S.E., Edwards, H.G.M. & Benning, L.G. (2006). Icarus 184, 158169.CrossRefGoogle Scholar
Jouglet, D., Poulet, F., Milliken, R., Mustard, J., Bibring, J.P., Langevin, Y., Gondet, B. & Gomez, C. (2007). J. Geophys. Res. 112, E08S06.CrossRefGoogle Scholar
Junge, K., Eicken, H. & Deming, J. (2004). Appl. Environ. Microbiol. 70, 550557.CrossRefGoogle Scholar
Junge, K., Eicken, H., Swanson, B.D. & Deming, J.W. (2006). Cryobiology 52, 417429.CrossRefGoogle Scholar
Junge, K., Krembs, C., Deming, J., Stierle, A. & Eicken, H. (2001). Ann. Glaciol. 33, 304310.CrossRefGoogle Scholar
Karl, D.M., Bird, D.F., Bjorkman, K., Houlihan, T., Shackelford, R. & Tupas, L. (1999). Science 286, 21442147.CrossRefGoogle Scholar
Kemurdjian, A.L. (1998). Planet rover as an object of the engineering design work. Robotics and Automation, 1998. In Proc. 1998 IEEE International Conf. on Robotics and Automation, Belgium, 2, pp. 140145.Google Scholar
Ketch, L.A., Malloch, D., Mahaney, W.C. & Huffman, M.A. (2001). Soil Biol. Biochem. 33, 199203.CrossRefGoogle Scholar
Kilinc, A., Carmichael, I.S.E., Rivers, M.L. & Sack, R.O. (1983). Contrib. Mineral. Petrol. 83, 136140.CrossRefGoogle Scholar
Kirschman, R.K., Sokolowski, W.M. & Kolawa, E.A. (2001). J. Electron. Packag. 123, 105111.CrossRefGoogle Scholar
Klein, H.P. (1979). Rev. Geophys. Space Phys. 17, 16551662.CrossRefGoogle Scholar
Klein, H.P. (1998). J. Geophys. Res. 103, 2846328466.CrossRefGoogle Scholar
Klingelhofer, G. et al. (2004). Science 306, 17401745.CrossRefGoogle Scholar
Kminek, G. & Bada, J.L. (2006). Earth Planet. Sci. Lett. 245, 15.CrossRefGoogle Scholar
Knoll, A.H. et al. (2005). Earth Planet. Sci. Lett. 240, 179189.CrossRefGoogle Scholar
Le Rudulier, D. & Bouillard, L. (1983). Appl. Environ. Microbiol. 46, 152159.Google Scholar
Liu, T. (2003). Geomorphology 53, 209234.CrossRefGoogle Scholar
Lovley, D.R. (1991). Microbiol. Mol. Biol. Rev. 55, 259287.Google Scholar
Madden, M.E., Bodnar, R.J. & Rimstidt, J.D. (2004). Nature 431, 821823.CrossRefGoogle Scholar
Maier, R.M., Drees, K.P., Neilson, J.W., Henderson, D.A., Quade, J., Betancourt, J.L., Rafael, N.-G., Rainey, F.A. & McKay, C.P. (2004). Science 306, 12891290.CrossRefGoogle Scholar
Mancinelli, R.L., Fahlen, T.F., Landheim, R. & Klovstad, M.R. (2004). Adv. Space Res. 33, 12441246.CrossRefGoogle Scholar
Mattingly, R., Matousek, S. & Jordan, F. (2004). Continuing evolution of Mars sample return. In Proc. IEEE Aerospace Conf., March 2004, p. 1392.Google Scholar
McDonald, G.D. & Bada, J.L. (1995). Geochim. Cosmochim. Acta. 59, 11791184.CrossRefGoogle Scholar
McElroy, M.B., Kong, T.Y. & Yung, Y.L. (1977). J. Geophys. Res. 82, 43794388.CrossRefGoogle Scholar
McKay, C.P., Friedmann, E.I., Gomez-Silva, B., Caceres-Villanueva, L., Andersen, D.T. & Landheim, R. (2003). Astrobiology 3, 393406.CrossRefGoogle Scholar
McLennan, S.M. et al. (2005). Earth Planet. Sci. Lett. 240, 95–121.CrossRefGoogle Scholar
Mellon, M.T. & Jakosky, B.M. (1993). J. Geophys. Res. 98, 33453364.CrossRefGoogle Scholar
Menzel, U. & Gottschalk, G. (1985). Arch. Arch. Microbiol. 143, 4751.CrossRefGoogle Scholar
Miller, A. (1976). World Surv. Climato. 12, 113145.Google Scholar
Mohammad, F.A.A., Reed, R.H. & Stewart, W.D.P. (1983). FEMS Microbiol. Lett. 16, 287290.CrossRefGoogle Scholar
Mormile, M.R., Hong, B., Adams, N.T., Benison, K.C. & Oboh-Ikuenobe, F.E. (2007). Characterization of a moderately halo-acidophilic bacterium isolated from Lake Brown, Western Australia. In Instruments, Methods, and Missions for Astrobiology: Proc. of the SPIE Annual Meeting, 33, p. 6694.Google Scholar
Morris, R.V. et al. (2008). J. Geophys. Res. 113, E12S42.CrossRefGoogle Scholar
Murchie, S., Barnouin-Jha, O., Barnoiun-Jha, K., Bishop, J., Johnson, J., McSween, H. & Morris, R.V. (2004). In Proc. Lunar and Planetary Science Conf. XXXV, p. 1740.Google Scholar
Navarro-Gonzalez, R. et al. (2003). Science 302, 10181021.CrossRefGoogle Scholar
Nealson, K. (1999). Orig. Life Evol. Biosph. 29, 7393.CrossRefGoogle Scholar
Nelson, G.A. (2003). Gravitational Space Biol. Bull. 16, 2936.Google Scholar
Nienow, J.A., McKay, C. & Friedmann, E. (1988). Microb. Ecol. 16, 271289.CrossRefGoogle Scholar
Oren, A. (2002). J. Ind. Microbiol. Biotechnol. 28, 5663.CrossRefGoogle Scholar
Oró, J. & Holzer, G. (1979). J. Mol. Evol. 14, 153160.CrossRefGoogle Scholar
Osburn, M.R. et al. (2007). Geomorphic and aqueous chemistry of a portion of the Upper Rio Tinto System, Spain. In Proc. Lunar and Planetary Science Conf. XXXVIII, p. 1740.Google Scholar
Oyama, V.I. & Berdahl, B.J. (1977). J. Geophys. Res. 82, 46694676.CrossRefGoogle Scholar
Palmer, R.J. (1990). Microb. Ecol. 19, 111118.CrossRefGoogle Scholar
Parker, T.J., Stephen Saunders, R. & Schneeberger, D.M. (1989). Icarus 82, 111145.CrossRefGoogle Scholar
Parnell, J. (2004). Int. J. Astrobiol. 3, 131137.CrossRefGoogle Scholar
Peeters, Z., Quinn, R., Martins, Z., Sephton, M.A., Becker, L., van Loosdrecht, M.C.M., Brucato, J., Grunthaner, F. & Ehrenfreund, P. (2009). Int. J. Astrobiol. 8, 301315.CrossRefGoogle Scholar
Perry, R., Lynne, B., Sephton, M., Kolb, V., Perry, C. & Staley, J. (2006). Geology 34, 537540.CrossRefGoogle Scholar
Perry, R.S., Engel, M.H., Botta, O. & Staley, J.T. (2003). Geomicrobiol. J. 20, 427438.CrossRefGoogle Scholar
Perry, R.S. & Sephton, M.A. (2006). Astron. Geophys. 47, 3435.CrossRefGoogle Scholar
Pimentel, G.C., Forney, P.B. & Herr, K.C. (1974). J. Geophys. Res. 79, 16231634.CrossRefGoogle Scholar
Pollack, J.B., Kasting, J.F., Richardson, S.M. & Poliakoff, K. (1987). Icarus 71, 203224.CrossRefGoogle Scholar
Potter, R. & Rossman, G. (1977). Science 196, 14461448.CrossRefGoogle Scholar
Potts, M. (1994). Microbiol. Mol. Biol. Rev. 58, 755805.Google Scholar
Potts, M. & Friedmann, E.I. (1981). Arch. Microbiol. 130, 267271.CrossRefGoogle Scholar
Price, P.B. & Sowers, T. (2004). Proc. Nat. Acad. Sci. USA 101, 46314636.CrossRefGoogle Scholar
Priscu, J. & Christner, B. (2004). Earth's icy biosphere. In: Microbial diversity and bioprospecting, ed. Bulls, A., p. 130145. American Society for Microbiology, Washington, DC.CrossRefGoogle Scholar
Priscu, J.C. et al. (1999). Science 286, 21412144.CrossRefGoogle Scholar
Priscu, J.C. et al. (1998). Science 280, 20952098.CrossRefGoogle Scholar
Pullan, D. et al. (2008). Astrobiology 8, 119156.CrossRefGoogle Scholar
Quinn, R.C., Zent, A.P., Grunthaner, F.J., Ehrenfreund, P., Taylor, C.L. & Garry, J.R.C. (2005). Planet. Space Sci. 53, 13761388.CrossRefGoogle Scholar
Reid, I.N. et al. (2006). Int. J. Astrobiol. 5, 8997.CrossRefGoogle Scholar
Rettberg, P., Rabbow, E., Panitz, C. & Horneck, G. (2004). Adv. Space Res. 33, 12941301.CrossRefGoogle Scholar
Rivkina, E.M., Friedmann, E.I., McKay, C.P. & Gilichinsky, D.A. (2000). Appl. Environ. Microbiol. 66, 32303233.CrossRefGoogle Scholar
Rivkina, E., Gilichinsky, D., Wagener, S., Tiekje, J. & McGrath, J. (1998). Geomicrobiol J. 15, 187193.CrossRefGoogle Scholar
Rochette, P., Gattacceca, J., Menvielle, M., Eisenlohr, P. & Chevrier, V. (2004). Planet. Space Sci. 52, 987995.CrossRefGoogle Scholar
Rundel, P.W., Dillon, M.O., Palma, B., Mooney, H.A., Gulmon, S.L. & Ehleringer, J.R. (1991). ALISO 13, 149.CrossRefGoogle Scholar
Russell, N.C., Edwards, H.G. & Wynn-Williams, D.D. (1998). Antarct. Sci. 10, 6374.CrossRefGoogle Scholar
Sabater, S., Buchaca, T., Cambra, J., Catalan, J., Guasch, H., Ivona, N., Muñoz, I., Navarro, E. & Romaní, A. (2003). J. Phycol. 39, 481489.CrossRefGoogle Scholar
Sarrazin, P., Brunner, W., Blake, D., Steele, A., Midtkandal, I. & Amundsen, H. (2007). Eos Trans. AGU 88, P31C–0548.Google Scholar
Schleper, C., Puehler, G., Holz, I., Gambacorta, A., Janekovic, D., Santarius, U., Klenk, H. & ZIllig, W. (1995). J. Bacteriol. 177, 70507059.CrossRefGoogle Scholar
Schuerger, A.C., Mancinelli, R.L., Kern, R.G., Rothschild, L.J. & McKay, C.P. (2003). Icarus 165, 253276.CrossRefGoogle Scholar
Sheridan, P., Miteva, V. & Brenchley, J. (2003). Appl. Environ. Microbiol. 69, 21532160.CrossRefGoogle Scholar
Shibly, H., Iagnemma, K. & Dubowsky, S. (2005). J. Terramech. 42, 113.CrossRefGoogle Scholar
Skelley, A.M., Aubrey, A.D., Willis, P.A., Amashukeli, X., Ehrenfreund, P., Bada, J.L., Grunthaner, F.J. & Mathies, R. (2007). J. Geophys. Res. 112, G04S11.CrossRefGoogle Scholar
Skelley, A.M., Scherer, J.R., Aubrey, A.D., Grover, W.H., Ivester, R.H.C., Ehrenfreund, P., Grunthaner, F.J., Bada, J.L. & Mathies, R.A. (2005). Proc. Nat. Acad. Sci. USA 102, 10411046.CrossRefGoogle Scholar
Smith, P. (2009). Phoenix in Wonderland. American Astronomical Society, AAS Meeting, session 114, p. 213.Google Scholar
Smith, P. et al. (2009). Science 325, 5861.CrossRefGoogle Scholar
Solomon, S. (1999). Rev. Geophys. 37, 275316.CrossRefGoogle Scholar
Squyres, S.W. et al. (2004a). Science 306, 16981703.CrossRefGoogle ScholarPubMed
Squyres, S.W. et al. (2004b). Science 306, 17091714.CrossRefGoogle ScholarPubMed
Squyres, S.W. & Knoll, A.H. (2005). Earth Planet. Sci. Lett. 240, 110.CrossRefGoogle Scholar
Staley, J.T. & Gosink, J.J. (1999). Annu. Rev. Microbiol. 53, 189215.CrossRefGoogle Scholar
Steele, A., Amundsen, H. & Botta, O. (2006). The Arctic Mars Analogue Svalbard Expedition 2006. In Mars 2030 – AustroMars Science Workshop, pp. 5560.Google Scholar
Sterflinger, K. (2000). Geomicrobiol. J. 17, 97–124.CrossRefGoogle Scholar
Stoker, C.R. & Bullock, M.A. (1997). J. Geophys. Res. 102, 1088110888.CrossRefGoogle Scholar
Sun, H.J. & Friedmann, E.I. (1999). Geomicrobiol. J. 16, 193202.Google Scholar
Swayze, G.A. et al. (2008). Discovery of the acid-sulfate mineral alunite in Terra Sirenum, Mars, Using MRO CRISM: Possible evidence for acid-saline lacustrine deposits? American Geophysical Union 2008 Fall Meeting, p. P44A–04.Google Scholar
Tosca, N.J., Knoll, A.H. & McLennan, S.M. (2008). Science 320, 12041207.CrossRefGoogle Scholar
Tosca, N.J., Mclennan, S., Clark, B., Grotzinger, J., Hurowitz, J., Knoll, A., Schroder, C. & Squyres, S. (2005). Earth Planet. Sci. Lett. 240, 122148.CrossRefGoogle Scholar
Vishnivetskaya, T.A., Petrova, M.A., Urbance, J., Ponder, M., Moyer, C.L., Gilichinsky, D.A. & Tiedje, J.M. (2006). Astrobiology 6, 400414.CrossRefGoogle Scholar
Vorobyova, E., Soina, V., Gorlenko, M., Minkovskaya, N., Zalinova, N., Mamukelashvili, A., Gilichinsky, D., Rivkina, E. & Vishnivetskaya, T. (1997). FEMS Microbiol. Rev. 20, 277290.CrossRefGoogle Scholar
Warren-Rhodes, K., Rhodes, K., Pointing, S., Ewing, S., Lacap, D., Gómez-Silva, B., Amundson, R., Friedmann, E. & McKay, C. (2006). Microb. Ecol. 52, 389398.CrossRefGoogle Scholar
Watters, T.R. et al. (2007). Science 318, 11251128.CrossRefGoogle Scholar
Weber, P. & Greenberg, J. (1985). Nature 316, 403407.CrossRefGoogle Scholar
Wierzchos, J., Ascaso, C., Sancho, L.G. & Green, A. (2003). Geomicrobiol. J. 20, 1524.CrossRefGoogle Scholar
Wynn-Williams, D.D. (1994). Antarct. Res. Book Ser. 62, 243–57.CrossRefGoogle Scholar
Wynn-Williams, D.D. & Edwards, H.G.M. (2000). Planet. Space Sci. 48, 10651075.CrossRefGoogle Scholar
Yen, A. et al. (2006). Evidence for halite at Meridiani Planum. In Proc. Lunar and Planetary Science Conf. XXXVII.Google Scholar
Yen, A.S., Kim, S.S., Hecht, M.H., Frant, M.S. & Murray, B. (2000). Science 289, 19091912.CrossRefGoogle Scholar
Yen, A.S., Murray, B.C. & Rossman, G.R. (1998). J. Geophys. Res. 103, 1112511134.CrossRefGoogle Scholar
Yong, R.N., MacDonald, E.M. & Everett, A.J. (1998). Influence of pH, metal concentration, and soil component removal on retention of Pb and Cu by an illitic Soil. In Adsorption of Metals by Geomedia, pp. 229253. Academic Press, San Diego, CA.CrossRefGoogle Scholar
Young, L.A., Aiken, E., Lee, P. & Briggs, G. (2005). Mars rotorcraft: possibilities, limitations, and implications for human/robotic exploration. In Proc. IEEE Aerospace Conf., p. 1274.Google Scholar
Zent, A.P. (2000). Bull. Am. Astron. Soc. 32, 1119.Google Scholar
Zent, A.P. & McKay, C.P. (1994). Icarus 108, 146157.CrossRefGoogle Scholar
Zent, A.P., Quinn, R.C., Grunthaner, F.J., Hecht, M.H., Buehler, M.G., McKay, C.P. & Ricco, A.J. (2003). Planet. Space Sci. 51, 167175.CrossRefGoogle Scholar
22
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Organic host analogues and the search for life on Mars
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Organic host analogues and the search for life on Mars
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Organic host analogues and the search for life on Mars
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *