Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-4wdfl Total loading time: 0.24 Render date: 2022-07-05T15:57:14.099Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Pollination of exoplanets by nebulae

Published online by Cambridge University Press:  16 April 2007

W.M. Napier*
Affiliation:
Centre for Astrobiology, Cardiff University, Cardiff, UK e-mail: smawmn@cf.ac.uk
*
*Correspondence to Professor W.M. Napier, Kilbeg South, Bandon, County Cork, Ireland.

Abstract

The Solar System passes within 5 pc of star-forming nebulae every ∼50–100 million years, a distance which can be bridged by protected micro-organisms ejected from the Earth by impacts. Such encounters disturb the Oort cloud, and induce episodes of bombardment of the Earth and the ejection of microbiota from its surface. Star-forming regions within the nebulae encountered may thus be seeded by significant numbers of microorganisms. Propagation of life throughout the Galactic habitable zone ‘goes critical’ provided that, in a typical molecular cloud, there are at least 1.1 habitable planets with impact environments similar to that of the Earth. Dissemination of microbiota proceeds most rapidly through the molecular ring of the Galaxy.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, J.C., Wells, L.E. & Gonzalez, G. (2002). Reseeding of early Earth by impacts of returning ejecta during the late heavy bombardment. Icarus 160, 183196.CrossRefGoogle Scholar
Bailey, M.E., Clube, S.V.M. & Napier, W.M. (1990). The Origin of Comets. Pergamon, Oxford.Google Scholar
Fernandez, J.A. (1992). Comet showers. In Chaos, Resonance and Collective Dynamical Phenomena in the Solar System (IAU Symp. vol. 152), ed. Ferraz-Mello, S., pp. 239254. Kluwer, Dortrecht.Google Scholar
Greaves, J. (2006). Space debris and planet detection. Astron. Geophys. 47, 2124.CrossRefGoogle Scholar
Grün, E., Zook, H.A., Fechtig, H. & Giese, R.H. (1985). Collisional balance of the meteoritic complex. Icarus 62, 244272.CrossRefGoogle Scholar
Hills, J.G. (1981). Comet showers and the steady-state infall of comets from the Oort cloud. Astrophys. J. 86, 17301740.Google Scholar
Hoyle, F. & Wickramasinghe, N.C. (2000). Astronomical Origins of Life. Kluwer, Dortrecht.CrossRefGoogle Scholar
Matese, J.J., Whitman, P.G., Innanen, K.A. & Valtonen, M. (1995). Periodic modulation of the Oort cloud comet flux by the adiabatically changing galactic tide. Icarus 116, 255268.CrossRefGoogle Scholar
Melosh, J. (2003). Exchange of meteorites (and life?) between stellar systems. Astrobiology 3, 207215.CrossRefGoogle ScholarPubMed
Mileikowsky, C. et al. (2000). Natural transfer of viable microbes in space. Icarus 145, 391427.CrossRefGoogle ScholarPubMed
Mundy, L.G. (1994). Properties of dark cloud and warm cloud cores. In Clouds, Cores and Low Mass Stars (ASP Conf. Ser., vol. 65), ed. Clemens, D.P. & Barvainis, H., p. 35. Astronomy Society of the Pacific San Franciso, CA.Google Scholar
Napier, W.M. (1987). The origin and evolution of the Oort cloud. In Interplanetary Matter, Proc. 10th European Regional Astronomy Meeting of the IAU, vol. 2, ed. Ceplecha, Z. & Pecina, P., pp. 1319. Astronomy Institute of Czech Academy of Science, Prague.Google Scholar
Napier, W.M. (2001). Temporal variation of the zodiacal dust cloud. Mon. Not. R. Astron. Soc. 321, 463470.CrossRefGoogle Scholar
Napier, W.M. (2004). A mechanism for interstellar panspermia. Mon. Not. R. Astron. Soc. 348, 4651.CrossRefGoogle Scholar
Napier, W.M. (2006). Evidence for cometary bombardment episodes. Mon. Not. R. Astron. Soc. 366, 977982.CrossRefGoogle Scholar
Napier, W.M. & Staniucha, M. (1982). Interstellar planetesimals – I. Dissipation of a primordial cloud of comets by tidal encounters with nebulae. Mon. Not. R. Astron. Soc. 198, 723735.CrossRefGoogle Scholar
Wallis, M. & Wickramasinghe, N.C. (2004). Interstellar transfer of planetary microbiota. Mon. Not. R. Astron. Soc. 348, 52.CrossRefGoogle Scholar
Yabushita, S. (1989). On the discrepancy between supply and loss of observable long-period comets. Mon. Not. R. Astron. Soc. 240, 6972.CrossRefGoogle Scholar
Yabushita, S. (2004). A spectral analysis of the periodicity hypothesis in cratering records. Mon. Not. R. Astron. Soc. 355, 5156.CrossRefGoogle Scholar
4
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Pollination of exoplanets by nebulae
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Pollination of exoplanets by nebulae
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Pollination of exoplanets by nebulae
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *