Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-s8fcc Total loading time: 0.254 Render date: 2022-12-05T21:49:17.492Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Study of putative microfossils in space dust from the stratosphere

Published online by Cambridge University Press:  19 May 2010

Kani Rauf
Affiliation:
Cardiff Centre for Astrobiology, Cardiff University, Cardiff CF10 3DY, UK
Anthony Hann
Affiliation:
School of Biosciences, Cardiff University, Cardiff CF10 3US, UK
Max Wallis
Affiliation:
Cardiff Centre for Astrobiology, Cardiff University, Cardiff CF10 3DY, UK
Chandra Wickramasinghe*
Affiliation:
Cardiff Centre for Astrobiology, Cardiff University, Cardiff CF10 3DY, UK

Abstract

Interplanetary dust particles (IDPs) were recovered from the stratosphere by a cryosampler flown below a balloon flying at altitudes of 20–41 km. The present study uses high-resolution scanning electron microscopy (SEM) and ultraviolet-visible (UV-Vis) spectrophotometry to examine fresh samples collected at 38–41 km. The SEM observations confirm the presence of 7–32 μm sized clusters of coccoidal (0.4–1.3 μm in diameter) and rod-shaped (0.6–2.5 μm in length) objects as components of the IDP complex. Many single globules (1.6–9.0 μm in diameter) are also observed, some of which exhibit a rough surface with filamentous features of variable lengths. The spectrophotometry of the particles in aggregate reveals a prominent peak centred at 216 nm, which is remarkably similar to that of diatoms and close to the UV astronomical feature of 217.5 nm that has been identified as the spectral characteristic of aromatic hydrocarbons. The evidence presented here suggests that the stratospheric particles are IDPs comprising an assortment of materials among which are included microfossil-like features in variable sizes and forms, such as coccoids, rods and filaments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bradley, J.P., Humecki, H.J. & Germani, M.S. (1992). Ap. J. 394, 643651.CrossRefGoogle Scholar
Bradley, J.P., Keller, L.P., Snow, T.P., Hanner, M.S., Flynn, G.J., Gezo, J.C., Clemett, S.J., Brownlee, D.E. & Bowey, J.E. (1999). Science 285(5434), 17161718.CrossRefGoogle Scholar
Brownlee, D.E. (1985). Science 13, 147.Google Scholar
Brownlee, D.E., Joswiak, D.J., Bradley, J.P., Gezo, J.C. & Hill, H.G.M. (2000). Lunar Planet. Sci. XXXI, 19211922.Google Scholar
Bruch, C.W. (1967). Microbes in the upper atmosphere and beyond. In Proc. Airborne Microbes, Society for General Microbiology Symposium, 17, pp. 345373. ed. Gregory, P.H. & Monteith, J.L.Cambridge University Press, Cambridge.Google Scholar
Buczynsik, C. & Chafetz, H.S. (1991). J. Sediment. Res. 61(2), 226233.CrossRefGoogle Scholar
Chen, J., Li, M., Li, A. & Wang, Y. (2008) On buckyonions as a carrier of the 2175°A interstellar extinction feature. In Proc. Organic Matter in Space IAU Symposium No. 251, pp. 7172.CrossRefGoogle Scholar
Clemett, S., Maechling, C., Zare, R., Swan, P. & Walker, R. (1993). Science 262(5134), 721725.CrossRefGoogle Scholar
Darling, D. (2001). Life Everywhere. Basic Books, New York.Google Scholar
Draine, B.T. & Malhotra, S. (1993). Astrophys. J. 414, 632.CrossRefGoogle Scholar
Fitzpatrick, E.L. & Massa, D. (2007). Ap. J. 663, 320341.CrossRefGoogle Scholar
Flynn, G.J., Keller, L.P., Jacobsen, C., Wirick, S. & Miller, M.A. (1999). Organic carbon in interplanetary dust particles. In Proc. Bioastronomy 99: A New Era in Bioastronomy, 6th Bioastronomy Meeting, Kohala Coast, Hawaii-E34.Google Scholar
Folk, R.L. (1993). J. Sediment. Res. 63(5), 990999.Google Scholar
Grant, W.B. et al. (1994). J. Geophys. Res. 99(D4), 81978211.CrossRefGoogle Scholar
Griffin, D.W. (2004). Aerobiologia 20, 135140.CrossRefGoogle Scholar
Harris, M.J., Wickramasinghe, N.C., Lloyd, D., Narlikar, J.V., Rajaratnam, P., Turner, M.P., Al-Mufti, S., Wallis, M.K. & Hoyle, F. (2001). Proc. SPIE 4495, 192198.CrossRefGoogle Scholar
Hoover, R.B. (2009). Proc. SPIE 7441, 119.Google Scholar
Hoover, R.B., Hoyle, F., Wickramasinghe, N.C., Hoover, M.J. & Al-Mufti, S. (1999). Astrophys Space Sci. 268, 197.CrossRefGoogle Scholar
Horneck, G. (1998). Adv. Space Res. 22(3), 317326.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N.C. (1962). Mon. Not. Roy. Astron. Soc. 124(5), 417433.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N.C. (1969). Nature 223(5205), 459462.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N.C. (1976). Nature 264, 45.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N.C. (1977). Nature 270, 323.CrossRefGoogle Scholar
Hoyle, F & Wickramasinghe, N.C (1979). Astrophys. Space Sci. 66, 7790.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N.C. (1991). The Theory of Cosmic Grains, p. 307. Kluwer Academic Press, Dordrecht.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N.C. (2000). Astronomical Origins of Life. Kluwer Academic Publishers, Dordrect.CrossRefGoogle Scholar
Hoyle, F., Wickramasinghe, N.C. & Al-Mufti, S. (1982). Astrophys. Space Sci. 86(2), 341344.CrossRefGoogle Scholar
Hudson, B., Flynn, G.J., Fraundorf, P., Hohenberg, C.M. & Shirck, J. (1981). Science 211, 383386.CrossRefGoogle Scholar
Imshenetsky, A.A. (1946). Mikrobiologiya 15, 422.Google Scholar
Imshenetsky, A.A., Lysenko, S.V. & Kazakov, G.A. (1978). Appl. Environ. Microbiol. 35, 15.Google Scholar
Lal, S., Archarya, Y.B., Patra, P.K., Rajaratnam, P., Subbarya, B.H. & Venkataramani, S. (1996). Ind. J. Radio Space Phys. 25, 17.Google Scholar
Li, A. & Greenberg, J.M. (2003). Solid State Astrochem 120, 3784.CrossRefGoogle Scholar
Lopez-Amoros, R., Mason, D.J. & Lloyd, D. (1995). J. Microbiol. Meth. 22, 165.CrossRefGoogle Scholar
Lysenko, S.V. (1979). Mikrobiologiia 48, 10661074 (in Russian).Google Scholar
Mathis, J.S. (1993). Rep. Prog. Phys. 56, 605652.CrossRefGoogle Scholar
Maurette, M., Olinger, C., Michel-Levy, C., Kurat, G., Pourchet, M., Braudstatter, M. & Bourot-Denise, M. (1991). Nature 351, 4447.CrossRefGoogle Scholar
McBride, E.F., Picard, M.D. & Folk, R.L. (1994). J. Sediment. Res. 64(3a), 535540.Google Scholar
McKay, D.S., Jr.Gibson, E.K., Thomas-Keprta, K.L., Vali, H., Romanek, S., Clemett, S.J., Chillier, X.D.F., Maechling, C.R. & Zare, R.N. (1996). Science 273(5277), 924930.CrossRefGoogle Scholar
McKeegan, K.D., Walker, R.M. & Zinner, E. (1985). Geochem. Cosmochem. Acta 49, 19711987.CrossRefGoogle Scholar
Messenger, S. (2000). Nature 404, 968971.CrossRefGoogle Scholar
Miyake, N. (2009). Laboratory studies of stratospheric dust – relevance to the theory of panspermia, PhD Thesis, Cardiff University.Google Scholar
Miyake, M., Wallis, M.K. & Wickramasinghe, N.C. (2009). Discovery in space Micro-dust: Siliceous fragments supporting the diatom hypothesis. EPSC abstract, vol. 4, EPSC2009-468.Google Scholar
Muthumariappan, C., Maheswar, G., Eswaraiah, C. & Pandey, A.K. (2008). A study of 2175°A absorption feature with TAUVEX: An Indo-Israeli UV mission. Organic Matter in Space, Proc. IAU Symposium No. 251.Google Scholar
Narlikar, J.V., Ramadurai, S., Bhargava, P., Damle, S.V., Wickramasinghe, N.C., Lloyd, D., Hoyle, F. & Wallis, D.H. (1998). Proc. SPIE Conf. on Instruments, Methods and Mission for Astrobiology 3441, 301.CrossRefGoogle Scholar
Narlikar, J.V. et al. (2003). Astrophys. Space Sci. 285(2), 555562.CrossRefGoogle Scholar
Pasko, V.P., Stanley, M.A., Mathews, J.D., Inan, U.S. & Wood, T.G. (2002). Nature 416, 152154.CrossRefGoogle Scholar
Rauf, K. & Wickramasingh, C. (2010). Int. J. Astrobiol. 9(1), 2934.CrossRefGoogle Scholar
Rietmeijer, F.J.M. (2004). Adv. Space Res. 33(9), 14751480.CrossRefGoogle Scholar
Rohatschek, H. (1996). J. Aerosol. Sci. 27, 467475.CrossRefGoogle Scholar
Sandford, S.A. (1996). Meteoritics Planet. Sci. 31, 44.Google Scholar
Secker, J., Wesson, P.S. & Lepock, J.R. (1994). Astrophys. Space Sci. 329, 1.CrossRefGoogle Scholar
Smibert, R.M. & Kreis, N.R. (1994). Methods for General and Molecular Bacteriology. In ed. Gerherdt, P., Murray, R.G.E., Wood, W.R. & Kreig, N.R.Am. Soc. Microbiol., 603.Google Scholar
Stecher, T.P. (1965). Astrophys. J. 142, 1683.CrossRefGoogle Scholar
Stecher, T.P. & Donn, B. (1965). Ap. J. 142, 1681.CrossRefGoogle Scholar
Thomas, K.L., Blanford, G.E., Keller, L.P., Klock, W. & McKay, D.S. (1993). Geochim. Cosmochim. Acta 57, 15511566.CrossRefGoogle Scholar
Wainwright, M., Alharbi, S. & Wickramasinghe, N.C. (2006). Int. J. Astrobiol. 5(1), 1315.CrossRefGoogle Scholar
Wainwright, M., Weber, P.K., Smith, J.B., Hutcheon, I.D., Klyce, B., Wickramasinghe, N.C., Narlikar, J.V. & Rajaratnam, P. (2004a). Aerobiologia 20, 237240.CrossRefGoogle Scholar
Wainwright, M., Wickramasinghe, N.C., Narlikar, J.V. & Rajaratnam, P. (2003). FEMS Microbiol. Lett. 218, 161165.CrossRefGoogle Scholar
Wainwright, M., Wickramasinghe, N.C., Narlikar, J.V., Rajaratnam, P. & Perkins, J. (2004b). Int. J. Astrobiol. 3(1), 1315.CrossRefGoogle Scholar
Whisler, B.A. (1940). Iowa State Coll. J. Sci. 14, 215231.Google Scholar
Wickramasinghe, N.C. (1974). Nature 252, 462.CrossRefGoogle Scholar
Wickramasinghe, N.C., Brooks, J. & Shaw, G. (1977). Nature 269, 674.CrossRefGoogle Scholar
Wickramasinghe, N.C., Hoyle, F. & Al-Jubory, T. (1989). Astrophys. Space Sci. 158, 135140.CrossRefGoogle Scholar
6
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Study of putative microfossils in space dust from the stratosphere
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Study of putative microfossils in space dust from the stratosphere
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Study of putative microfossils in space dust from the stratosphere
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *