Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-phmbd Total loading time: 0.182 Render date: 2022-07-01T18:02:41.374Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Tidal chain reaction and the origin of replicating biopolymers

Published online by Cambridge University Press:  08 September 2005

Richard Lathe
Affiliation:
Pieta Research, PO Box 27069, Edinburgh EH10 5YW, UK e-mail: rlathe@pieta-research.org

Abstract

Template-directed polymer assembly is a likely feature of prebiotic chemistry, but the product blocks further synthesis, preventing amplification and Darwinian selection. Nucleic acids are unusual because charge repulsion between opposing phosphates permits salt-dependent association and dissociation. It was postulated (Lathe, R. (2004). Fast tidal cycling and the origin of life. Icarus168, 18–22) that tides at ocean shores provide the driving force for amplification: evaporative concentration promoted association/assembly on drying, while charge repulsion on tidal dilution drove dissociation. This permits exponential amplification by a process termed here the tidal chain reaction (TCR). The process is not strictly contingent upon tidal ebb and flow: circadian dews and rainfalls can produce identical cycling. Ionic strength-dependent association and dissociation of nucleic acids and possible prebiotic precursors are reviewed. Polymer scavenging, chain assembly by the recruitment of pre-formed fragments, is proposed as the primary mechanism of reiterative chain assembly. Parameters determining prebiotic polymer structure and amplification by TCR are discussed, with the suggestion that Darwinian selection may have operated on families of related polymers rather than on individual molecules.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Nothing is ever as simple as it seems’ (attributed to EA Murphy, Jr, 1949).
Dedicated to Dr Harold F. Blum.
16
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Tidal chain reaction and the origin of replicating biopolymers
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Tidal chain reaction and the origin of replicating biopolymers
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Tidal chain reaction and the origin of replicating biopolymers
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *