Skip to main content Accesibility Help

Age aspects of habitability

  • M. Safonova (a1), J. Murthy (a1) and Yu. A. Shchekinov (a2)

A ‘habitable zone’ of a star is defined as a range of orbits within which a rocky planet can support liquid water on its surface. The most intriguing question driving the search for habitable planets is whether they host life. But is the age of the planet important for its habitability? If we define habitability as the ability of a planet to beget life, then probably it is not. After all, life on Earth has developed within only ~800 Myr after its formation – the carbon isotope change detected in the oldest rocks indicates the existence of already active life at least 3.8 Gyr ago. If, however, we define habitability as our ability to detect life on the surface of exoplanets, then age becomes a crucial parameter. Only after life had evolved sufficiently complex to change its environment on a planetary scale, can we detect it remotely through its imprint on the atmosphere – the so-called biosignatures, out of which the photosynthetic oxygen is the most prominent indicator of developed (complex) life as we know it. Thus, photosynthesis is a powerful biogenic engine that is known to have changed our planet's global atmospheric properties. The importance of planetary age for the detectability of life as we know it follows from the fact that this primary process, photosynthesis, is endothermic with an activation energy higher than temperatures in habitable zones, and is sensitive to the particular thermal conditions of the planet. Therefore, the onset of photosynthesis on planets in habitable zones may take much longer time than the planetary age. The knowledge of the age of a planet is necessary for developing a strategy to search for exoplanets carrying complex (developed) life – many confirmed potentially habitable planets are too young (orbiting Population I stars) and may not have had enough time to develop and/or sustain detectable life. In the last decade, many planets orbiting old (9–13 Gyr) metal-poor Population II stars have been discovered. Such planets had had enough time to develop necessary chains of chemical reactions and may carry detectable life if located in a habitable zone. These old planets should be primary targets in search for the extraterrestrial life.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Age aspects of habitability
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Age aspects of habitability
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Age aspects of habitability
      Available formats
Corresponding author
Hide All
Abel, T., Bryan, G.L. & Norman, M.L. (2000). The formation and fragmentation of primordial molecular clouds. Astrophys. J. 540, 39.
Alberts, B. et al. (2002). Molecular Biology of the Cell, 4th edn. Garland Science, New York.
Anbar, A.D., Duan, Y., Lyons, T.W., Arnold, G.L., Kendall, B., Creaser, R.A., Kaufman, A.J., Gordon, G.W., Scott, C., Garvin, J. & Buick, R. (2007). A whiff of oxygen before the great oxidation event? Science 317, 1903.
Anglada-Escudé, G. et al. (2012). A planetary system around the nearby M Dwarf GJ 667C with at least one super-earth in its habitable zone. Astrophys. J. Lett. 751, L16.
Anglada-Escudé, G. et al. (2013). A dynamically-packed planetary system around GJ 667C with three super-Earths in its habitable zone. Astron. Astrophys. 556, A126.
Anglada-Escudé, G. et al. (2014). Two planets around Kapteyn's star: a cold and a temperate super-Earth orbiting the nearest halo red dwarf. Mon. Not. R. Astron. Soc. 443, L89.
Aoki, W. et al. (2006). HE 1327-2326, an unevolved star with [Fe/H]<−5.0. I. A comprehensive abundance analysis. Astrophys. J. 639, 897.
Beers, T.C. & Christlieb, N. (2005). The discovery and analysis of very metal-poor stars in the galaxy. Ann. Rev. Astron. Astrophys. 43, 531.
Bengston, S. (Ed.) (1994). Early Life on Earth. Nobel Symp. Proc. Series. Columbia University Press, New York. ISBN-10#0231080883.
Benson, A.A., Bassham, J.A., Calvin, M., Goudate, T.C., Haas, U.A. & Stepka, W. (1950). The path of carbon in photosynthesis. 5. Paper chromatography and radioautography of the products. J. Am. Chem. Soc. 12, 1710.
Brack, A. et al. (2010). Origin and evolution of life on terrestrial planets. Astrobiology 10, 6976.
Borucki, W.J. et al. (2013). Kepler-62: a five-planet system with planets of 1.4 and 1.6 Earth radii in the habitable zone. Science 340, 587590.
Bouwens, R.J., Illingworth, G.D., Franx, M. & Ford, H. (2007). UV luminosity functions at z 4, 5, and 6 from the hubble ultra deep field and other deep hubble space telescope ACS fields: evolution and star formation history. Astrophys. J. 670, 928.
Bromm, V., Coppi, P.S. & Larson, R.B. (1999). Forming the first stars in the universe: the fragmentation of primordial gas. Astrophys. J. 527, L5.
Buchhave, L.A., Bizzarro, M., Latham, D.W., Sasselov, D., Cochran, W.D., Endl, M., Isaacson, H., Juncher, D. & Marcy, G.W. (2014). Three regimes of extrasolar planet radius inferred from host star metallicities. Nature 509, 593.
Campante, T.L. et al. (2015). An ancient extrasolar system with five sub-earth-size planets. Astrophys. J. 799, 170.
Carraro, G., Geisler, D., Villanova, S., Frinchaboy, P.M. & Majewski, S.R. (2007). Old open clusters in the outer Galactic disk. Astron. Astrophys. 476, 217227.
Carter, B. (1983). The anthropic principle and its implications for biological evolution. Phil. Trans. R. Soc. Lond. A 310, 347363.
Catling, D.C., Glein, C.R., Zahnle, K.J. & McKay, C.P. (2005). Why O2 is required by complex life on habitable planets and the concept of planetary “oxygenation time”. Astrobiology 5, 415438.
Chen, L., Hou, J.L. & Wang, J.J. (2003). On the galactic disk metallicity distribution from open clusters. I. New catalogs and abundance gradient. Astronom. J. 125, 1397.
Churchill, D. & Kasting, J.F. (2000). Nitrous oxide in the early atmosphere: a marker for life? In Proc. Conf. ‘Darwin and Astronomy – the Infrared Space Interferometer’, Stockholm, Sweden, 17–19 November 1999. European Space Agency, Noordwijk, The Netherlands, ESA SP 451, p. 183.
Chyba, C.F. & Hand, K.P. (2005). Astrobiology: the study of the living universe. Annu. Rev. Astron. Astrophys. 43, 31.
Clark, P.C., Glover, S.C.O., Smith, R.J., Greif, T.H., Klessen, R.S. & Bromm, V. (2011). The formation and fragmentation of disks around primordial protostars. Science 331, 1040.
Crick, F.H.C. & Orgel, L.E. (1973). Prebiotic activation processes. Icarus 19, 341.
Crossfield, I.J.M. et al. (2015). A nearby M star with three transiting super-Earths discovered by K2. Astrophys. J. 804, 10.
da Silva, L., Girardi, L., Pasquini, L., Setiawan, J., von der Lühe, O., de Medeiros, J.R., Hatzes, A., Döllinger, M.P. & Weiss, A. (2006). Basic physical parameters of a selected sample of evolved stars. Astron. Astrophys. 458, 609623.
Davies, P.C.W., Benner, S.A., Cleland, C.E., Lineweaver, C.H., McKay, C.P. & Wolfe-Simon, F. (2009). Signatures of a shadow biosphere. Astrobiology 9, 241.
Dedikov, S.Yu. & Shchekinov, Yu.A. (2004). Mixing of metals during stripping of galactic gaseous halos. Astrol. Rep. 48, 9.
Döllinger, M.P., Hatzes, A.P., Pasquini, L., Guenther, E.W., Hartmann, M. & Girardi, L. (2000). Planetary companion candidates around the K giant stars 42 Draconis and HD 139 357. Astron. Astrophys. 499, 935942.
Domagal-Goldman, S.D., Meadows, V.S., Claire, M.W. & Kasting, J.F. (2011). Using biogenic sulfur gases as remotely detectable biosignatures on anoxic planets. Astrobiology 11, 419441.
Drossart, P. et al. (2013). The Exoplanet Characterisation Observatory (EChO): an ESA mission to characterize exoplanets. AAS/Division for Planetary Sciences Meeting Abstracts, 45, #211.25.
Etiope, G. & Sherwood Lollar, B. (2013). Abiotic methane on earth. Rev. Geophys. 51, 276299.
Farquhar, G.D., von Caemmerer, S. & Berry, J.A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C 3 species. Planta 149, 78.
Finkelstein, S.L. et al. (2013). A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51. Nature 502, 524.
Fomina, I., Biel, K. (2014). Photosynthetic carbon metabolism: strategy of adaptation. In Contemporary Problems of Photosynthesis, vol. 2, ed. Allakhverdiev, S.I., Rubin, A.B. and Shuvalov, V.A., pp. 415483. Institute of Computer Science, Izhevsk, Moscow [in Russian].
France, K. et al. (2013). The ultraviolet radiation environment around M dwarf exoplanet host stars. Astrophys. J. 763, 149.
Gaidos, E. (2013). Candidate planets in the habitable zones of Kepler stars. Astrophys. J. 770, 90.
Haywood, M. (2008). A peculiarity of metal-poor stars with planets? Astron. Astrophys. 482, 673676.
Heger, A. & Woosley, S.E. (2002). The nucleosynthetic signature of population III. Astrophys. J. 567, 532.
Heller, R. (2014). Detecting extrasolar moons akin to solar system satellites with an orbital sampling effect. Astrophys. J. 787, 14.
Heller, R. & Armstrong, J. (2014). Superhabitable worlds. Astrobiology 14, 50.
Heller, R. et al. (2014). Formation, habitability, and detection of extrasolar moons. Astrobiology 14, 798835.
Hikosaka, K., Ishikawa, K., Borjigidai, A., Muller, O. & Onoda, Y. (2006). Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. J. Exp. Bot. 57, 291.
Hilico, J.H., Loete, M. & Champion, J.P. (1987). The millimiter-wave spectrum of Methane. J. Mol. Spectrosc. 122, 381.
Hinkel, N.R., Timmes, F.X., Young, P.A., Pagano, M.D. & Turnbull, M.C. (2014). Stellar abundances in the solar neighborhood: the hypatia catalog. Astronom. J. 148, 54.
Hogan, E., Burleigh, M.R. & Clarke, F.J. (2009). The DODO survey – II. A Gemini direct imaging search for substellar and planetary mass companions around nearby equatorial and Northern hemisphere white dwarfs. Mon. Not. R. Astron. Soc. 396, 2074.
Huang, S.-S. (1959). The problem of life in the universe and the mode of star formation. Publ. Astron. Soc. Pacific 71, 421424.
Irwin, L.N., Méndez, A., Fairén, A.G. & Schulze-Makuch, D. (2014). Assessing the possibility of biological complexity on other worlds, with an estimate of the occurrence of complex life in the milky way galaxy. Challenges 5, 159.
Ito, H., Aoki, W., Beers, T.C., Tominaga, N., Honda, S. & Carollo, D. (2013). Chemical analysis of the ninth magnitude carbon-enhanced metal-poor star BD+44-493. Astrophys. J. 773, 33.
Jones, M.I. & Jenkins, J.S. (2014). No evidence of the planet orbiting the extremely metal-poor extragalactic star HIP 13044. Astron. Astrophys. 562, A129.
Kaltenegger, L. & Fridlund, M. (2005). The Darwin mission: search for extrasolar planets. Adv. Space Res. 36, 11141122.
Kaltenegger, L., Traub, W.A. & Jucks, K.W. (2007). Spectral evolution of an earth-like planet. Astrophys. J. 658, 598.
Kardashev, N.S. et al. (2014). Review of scientific topics for the millimetron space observatory. Phys. – Usp. 57, 11991228.
Kasting, J. (1993). Earth's early atmosphere. Science 259, 920.
Kasting, J.F., Kopparapu, R., Ramirez, R.M. & Harman, C.E. (2014). Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars. Proc. Natl. Acad. Sci. USA 111, 1264112646.
Kharecha, P., Kasting, J. & Siefert, J. (2005). A coupled atmosphere-ecosystem model of the early Archean Earth. Geobiology 3, 5376.
Kiang, N.Y., Segura, A., Tinetti, G., Govindjee, Blankenship, R.E., Cohen, M., Siefert, J., Crisp, D. & Meadows, V.S. (2007). Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds. Astrobiology 7, 252.
Keller, S.C. et al. (2014). A single low-energy, iron-poor supernova as the source of metals in the star SMSS J031300.36-670839.3. Nature 506, 463.
Kenrick, P. & Crane, P.R. (1997). The origin and early evolution of plants on land. Nature 389, 3339.
Kepner, T. (2007). … And Remote from Neighbours. Wilder Publications, LLC, Radford, VA. ISBN 10:1-934451-02-9.
Lammer, H. et al. (2009). What makes a planet habitable? Astron Astrophys. Rev. 17, 181.
Lammer, H. et al. (2013). The science of exoplanets and their systems. Astrobiology 13, 793813.
Lin, H.W., Gonzalez Abad, G. & Loeb, A. (2014). Detecting industrial pollution in the atmospheres of earth-like exoplanets. Astrophys. J. Lett. 792, LL7.
Lisse, C.M., Wyatt, M.C., Chen, C.H., Morlok, A., Watson, D.M., Manoj, P., Sheehan, P., Currie, T.M., Thebault, P. & Sitko, M.L. (2012). Spitzer evidence for a late-heavy bombardment and the formation of ureilites in eta corvi at ~1 Gyr. Astrophys. J. 747, 93L.
Lyons, T.W. & Reinhard, C.T. (2011). Earth science: sea change for the rise of oxygen, Nature 478, 194195.
Maher, K.A. & Stevenson, D.J. (1988). Impact frustration of the origin of life. Nature 331, 612.
Mamajek, E.E. & Hillenbrand, L.A. (2008). Improved age estimation for solar-type dwarfs using activity-rotation diagnostics. Astrophys. J. 687, 12641293.
Mani, G.S. (1991). In Evolutionary Theories of Economic and Technological Change – Present Status and Future Prospects, ed. Saviotti, P.P. and Metcalfe, J.S., pp. 3157. Harwood Academic Publishers, UK.
Melosh, H.J. & Vickery, A.M. (1989). Impact erosion of the primordial atmosphere of Mars. Nature 338, 487.
Méndez, A., González, Z., Jimenez, S.A., Pérez, W. & Bracero, K. (2013). The Visible Paleo-Earth Project: A look from space to the evolution of a habitable planet. [in preparation].
Metcalfe, T.S. (2013). Asteroseismology – A Tool for Characterizing Exoplanet Host Star. Invited talk at NASA Exoplanet Exploration Program Analysis Group, Long Beach, CA, USA.
Moynier, F., Koeberl, C., Quitté, G. & Telouk, P. (2009). A tungsten isotope approach to search for meteoritic components in terrestrial impact rocks. Earth Planet Sci. Lett. 286, 35.
Niederer, J.M.G. (2012). The Infrared Spectrum of Methane. Dissertation ETH Nr. 19829, Eidgenössische Technische Hochschule Zürich (ETH Zürich), Zürich, Verlag Dr. Hut, München, DOI:10.3929/ethz-a-007316862.
Nielsen, F.H. (1997). Beyond copper, iodine, selenium and zinc: other elements that will be found important in human nutrition by the year 2000. In Proc. of 9th Int. Symp. on Trace Elements in Man and Animals (TEMA-9), Banff, Alberta, Canada, 19–24 May 1996, ed. Fischer, P.W.F., L'Abbé, M.R., Cockell, K.A. and Gibson, R.S., pp. 653–656. NRC Research Press, Ottawa.
Nordström, B., Mayor, M., Andersen, J., Holmberg, J., Pont, F., Jørgensen, B.R., Olsen, E.H., Udry, S. & Mowlavi, N. (2004). The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of 14 000 F and G dwarfs. Astron. Astrophys. 418, 9891019.
Pepe, F., Lovis, C., Ségransan, D., Benz, W., Bouchy, F., Dumusque, X., Mayor, M., Queloz, D., Santos, N.C. & Udry, S. (2011). The HARPS search for Earth-like planets in the habitable zone. Astron. Astrophys. 534, A58.
Petigura, E.A., Howard, A.W. & Marcy, G.W. (2013). Prevalence of Earth-size planets orbiting Sun-like stars. Proc. Natl. Acad. Sci. USA 110, 19273.
Robbins, S.J. & Hynek, B.M. (2012). Impact History of Large Bollides at Mars: Implications for the Late Heavy Bombardment and Isochron Uncertainties. 43rd Lunar and Planetary Science Conference, #1649.
Rodler, F. & Lopez-Morales, M. (2014). Feasibility studies for the detection of O2 in an earth-like exoplanet. Astrophys. J. 781, 54.
Saffe, C., Gómez, M. & Chavero, C. (2005). On the ages of exoplanet host stars. Astron. Astrophys. 443, 609626.
Sagan, C. (1974). The origin of life in a cosmic context. Orig. Life Evol. Biosph. 5, 497.
Sagan, C., Thompson, W.R., Carlson, R., Gurnett, D. & Hord, C. (1993). A search for life on Earth from the Galileo spacecraft. Nature 365, 715.
Santos, N.C. et al. (2010). The HARPS search for southern extra-solar planets. XXI. Three new giant planets orbiting the metal-poor stars HD 5388, HD 181720, and HD 190984. Astron. Astrophys. 512, AA47.
Savaglio, S. (2006). GRBs as cosmological probes – cosmic chemical evolution. New J. Phys. 8, 195.
Schaefer, L. & Sasselov, D. (2015). The persistence of oceans on earth-like planets: insights from the deep-water cycle. Astrophysical J. 801:40
Schoenberg, R., Kamber, B.S., Collerson, K.D. & Moorbath, S. (2002). Tungsten isotope evidence from ~3.8-Gyr metamorphosed sediments for early meteorite bombardment of the Earth. Nature 418, 403.
Schulze-Makuch, D. & Irwin, L.N. (2006). The prospect of alien life in exotic forms on other worlds. Naturwissenschaften 93, 155172.
Schulze-Makuch, D., Méndez, A., Fairén, A.D., von Paris, P., Turse, C., Boyer, G., Davila, A.F., António, M.R.D.S., Catling, D. & Irwin, L.N. (2011). A two-tiered approach to assessing the habitability of exoplanets. Astrobiology 11, 10411052.
Seager, S., Schrenk, M. & Bains, W. (2012). An astrophysical view of Earth-based metabollic biosignature gases. Astrobiology 12, 6182.
Selsis, F., Despois, D. & Parisot, J.P. (2002). Signature of life on exoplanets: can Darwin produce false positive detections? Astron. Astrophys. 388, 985.
Setiawan, J., Klement, R.J., Henning, Th., Rix, H.-W., Rochau, B., Rodmann, J. & Schulze-Hartung, T. (2010). Giant planet around a metal-poor star of extragalactic origin. Science 330, 1642.
Setiawan, J., Roccatagliata, V., Fedele, D., Henning, Th., Pasquali, A., Rodríguez-Ledesma, M.V., Caffau, E.; Seemann, U. & Klement, R.J. (2012). Planetary companions around the metal-poor star HIP 11952. Astron. Astrophys. 540, 141.
Schindler, T.L. & Kasting, J.F. (2000). Synthetic spectra of simulated terrestrial atmospheres containing possible biomarker gases. Icarus 145, 262271.
Shchekinov, Yu., Safonova, M. & Murthy, J. (2013). Planets in the early universe. Astrophys. Space Sci. 346, 3140.
Shizgal, B.D. & Arkos, G.G. (1996). Nonthermal escape of the atmospheres of Venus, Earth, and Mars. Rev. Geophys. 34, 483.
Solomatov, V.S. (2000). Fluid dynamics of a terrestrial Magma Ocean. In Origin of the Earth and Moon, ed. Canup, R.M. et al. , pp. 323338. University Arizona Press, Tucson.
Song, I., Zuckerman, B., Weinberger, A.J. & Becklin, E.E. (2005). Extreme collisions between planetesimals as the origin of warm dust around a Sun-like star. Nature 436, 363.
Stacy, A., Bromm, V. & Loeb, A. (2011). Rotation speed of the first stars. Mon. Not. R. Astron. Soc. 413, 543.
Taylor, S.R. & McLennan, S.M. (1995). Rev. Geophys. 33, 241.
Tinetti, G. et al. (2012). EChO. Exoplanet characterisation observatory. Exp. Astron. 34, 311353.
Toole, G. & Toole, S. (1997). Advance Human and Social Biology. Stanley Thornes Ltd., Cheltenham.
Torres, G. et al. (2015). Validation of twelve small Kepler transiting planets in the habitable zone. Astrophys. J. 800, 99.
Tuomi, M. & Anglada-Escudé, G. (2013). Up to four planets around the M dwarf GJ 163. Sensitivity of Bayesian planet detection criteria to prior choice. Astron. Astrophys. 556, A111.
Tuomi, M., Anglada-Escudé, G., Gerlach, E., Jones, H.R.A., Reiners, A., Rivera, E.J., Vogt, S.S. & Butler, R.P. (2013a). Habitable-zone super-Earth candidate in a six-planet system around the K2.5V star HD 40307. Astron. Astrophys. 549, A48.
Tuomi, M. et al. (2013b). Signals embedded in the radial velocity noise. Periodic variations in the tau Ceti velocities. Astron. Astrophys. 551, A79.
Turnbull, M.C. & Tarter, J.C. (2003a). Target selection for SETI. I. A catalog of nearby habitable stellar systems. Astrophys. J. Suppl. 145, 181.
Turnbull, M. & Tarter, J. (2003b). Target selection for SETI. II. Tycho-2 Dwarfs, old open clusters, and the nearest 100 stars. Astrophys. J. Suppl. 149, 423.
Tutukov, A.V. & Fedorova, A.V. (2012). Formation of planets during the evolution of single and binary stars. Astrol. Rep. 56, 305.
Umeda, H. & Nomoto, K. (2005). Variations in the abundance pattern of extremely metal-poor stars and nucleosynthesis in population III supernovae. Astrophys. J. 619, 427.
Vasiliev, E.O., Dedikov, S. & Shchekinov, Yu. A. (2009). Chemical inhomogeneity of the post-reionization universe. Astrophys. Bull. 64, 317.
von Braun, K. et al. (2011). 55 Cancri: stellar astrophysical parameters, a planet in the habitable zone, and implications for the radius of a transiting super-earth. Astrophys. J. 740, 49.
Webster, C.R. et al. (2013). Isotope ratios of H, C, and O in CO2 and H2O of the Martian atmosphere. Science 341, 260.
Wille, M., Kramers, J.D., Nägler, T.F., Beukes, N.J., Schröder, S., Meisel, Th., Lacassie, J.P. & Voegelin, A.R. (2007). Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales. Geochim. Cosmochim. Acta 71, 24172435.
Wittenmyer, R.A. et al. (2014). GJ 832c: a super-earth in the habitable zone. Astrophys. J. 791, 114.
Wyatt, M.C., Smith, R., Greaves, J.S., Beichman, C.A., Bryden, G. & Lisse, C.M. (2007). Transience of hot dust around sun-like stars. Astrophys. J. 658, 569.
Yanagi, T. (2011). Arc Volcano in Japan, Lecture Notes in Earth Sciences. Springer-Verlag, Berlin, Heidelberg.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed