Skip to main content Accessibility help
×
Home

Anaerobic microorganisms in astrobiological analogue environments: from field site to culture collection

  • C. S. Cockell (a1), P. Schwendner (a1), A. Perras (a2) (a3), P. Rettberg (a4), K. Beblo-Vranesevic (a4), M. Bohmeier (a4), E. Rabbow (a4), C. Moissl-Eichinger (a2), L. Wink (a2), V. Marteinsson (a5), P. Vannier (a5), F. Gomez (a6), L. Garcia-Descalzo (a6), P. Ehrenfreund (a7), E.P. Monaghan (a7), F. Westall (a8), F. Gaboyer (a8), R. Amils (a9), M. Malki (a9), R. Pukall (a10), P. Cabezas (a11) and N. Walter (a11)...

Abstract

Astrobiology seeks to understand the limits of life and to determine the physiology of organisms in order to better assess the habitability of other worlds. To successfully achieve these goals we require microorganisms from environments on Earth that approximate to extraterrestrial environments in terms of physical and/or chemical conditions. The most challenging of these environments with respect to sample collection, isolation and cultivation of microorganisms are anoxic environments. In this paper, an approach to this challenge was implemented within the European Union's MASE (Mars Analogues for Space Exploration) project. In this review paper, we aim to provide a set of methods for future field work and sampling campaigns. A number of anoxic environment based on characteristics that make them analogous to past and present locations on Mars were selected. They included anoxic sulphur-rich springs (Germany), the salt-rich Boulby Mine (UK), a lake in a basaltic context (Iceland), acidic sediments in the Rio Tinto (Spain), glacier samples (Austria) and permafrost samples (Russia and Canada). Samples were collected under strict anoxic conditions to be used for cultivation and genomic community analysis. Using the samples, a culturing approach was implemented to enrich anaerobic organisms using a defined medium that would allow for organisms to be grown under identical conditions in future physiological comparisons. Anaerobic microorganisms were isolated and deposited with the DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH) culture collection to make them available to other scientists. In MASE, the selected organisms are studied with respect to survival and growth under Mars relevant stresses. They are artificially fossilized and the resulting biosignatures studied and used to investigate the efficacy of life detection instrumentation for planetary missions. Some of the organisms belong to genera with medical and environmental importance such as Yersinia spp., illustrating how astrobiology field research can be used to increase the availability of microbial isolates for applied terrestrial purposes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Anaerobic microorganisms in astrobiological analogue environments: from field site to culture collection
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Anaerobic microorganisms in astrobiological analogue environments: from field site to culture collection
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Anaerobic microorganisms in astrobiological analogue environments: from field site to culture collection
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
Abercromby, A.F.J., Chappell, S.P. & Gernhardt, M.L. (2013). Acta Astron. 91, 3448.
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990). J. Mol. Biol. 215, 403410.
Amman, R.I., Ludwig, W. & Schleifer, K-H. (1995). Microbiol. Rev. 59, 143169.
Bade, K., Manz, W. & Szewzyk, U. (2000). FEMS Microbiol. Ecol. 32, 215223.
Balch, W.E., Fox, G.E., Magrum, L.J., Woese, C.R. & Wolfe, R.S. (1979). Microbiol. Rev. 43, 260296.
Bancerz-Kisiel, A. & Szweda, W. (2015). Annal. Agric. Environ. Med. 22, 397402.
Bandfield, J.L. (2007). Nature 447, 6468.
Bandfield, J.L. & Feldman, W.C. (2008). J. Geophys. Res. 113, article E08001. doi: 10.1029/2007JE003007.
Behbehani, M.J., Jordan, H.V. & Santoro, D.L. (1982). Appl. Environ. Microbiol. 43, 255256.
Bibring, J.-P. et al. (2006). Science 312, 400404.
Cabrol, N.A. et al. (2007). J. Geophys. Res. 112, G04.
Canganella, F. & Wiegel, J. (2011). Naturwissenschaften 98, 253279.
Casamayor, E.O., Massana, R., Benlloch, S., Øvreås, L., Díez, B., Goddard, V.J., Gasol, J.M., Joint, I., Rodríguez-Valera, F. & Pedrós-Alió, C. (2002). Environ. Microbiol. 4, 338348.
Chen, P.E. et al. (2010). Genome Biol. 11:R1. doi: 10.1186/gb-2010-11-1-r1.
Chun, J., Lee, J.H., Jung, Y., Kim, M., Kim, S., Kim, B.K. & Lim, Y.W. (2007). Int. J. Syst. Evol. Microbiol. 57, 22592261.
Clark, B.C. et al. (2005). Earth Planet. Sci. Lett. 240, 7394.
Cockell, C.S., Payler, S., Paling, S. & McLuckie, D. (2013). Astron. Geophys. 54, 2.252.27.
Cockell, C.S et al. (2016). Astrobiology 16, 89117.
Cousins, C.R. (2015). Life 5, 568586.
Ehlmann, B., Mustard, J.F., Murchie, S.L., Bibring, J.-P., Meunier, A., Fraeman, A.A. & Langevin, Y. (2011). Nature 479, 5360.
Fernandez-Remolar, D.C., Rodriguez, N., Gomez, F. & Amils, R. (2003). J. Geophys. Res-Planets 108(E7), 5080. Bibcode: 2003JGRE.108.5080F. doi: 10.1029/2002JE001918.
Fernandez-Remolar, D.C., Morris, R.V., Gruener, J.E., Amils, R. & Knoll, A.H. (2005). Earth Planet. Sci. Lett. 24, 149167.
Fröhlich, J. & König, H. (2000). FEMS Microbiol. Rev. 24, 567572.
Gaidos, E., Deschenes, B., Dundon, L., Fagan, K., Menviel-Hessler, L., Moskovitz, N. & Workman, M. (2005). Astrobiology 5, 100126.
Gaillard, F., Michalski, J., Berger, G., McLennan, S.M. & Scaillet, B. (2013). Space Sci. Rev. 174, 251300.
Grotzinger, J.P. et al. (2014). Science 343, article 1242777. doi: 10.1126/science.1242777.
Hamilton, C.E. & Christensen, P.R. (2005). Geology 33, 433436.
Harrison, J.P., Gheeraert, N., Tsigelnitskiy, D. & Cockell, C.S. (2013). Trends Microbiol. 21, 204212.
Hatheway, C.L. (1990). Clin. Microbiol. Rev 3, 6698.
Hori, T., Aoyagi, T., Itoh, H., Narihiro, T., Oikawa, A., Suzuki, K., Ogata, A., Friedich, M.W., Conrad, R. & Kamagata, Y. (2015). Front. Microbiol. 6, article 386.
Huber, R., Burggraf, S., Mayer, T., Barns, S.M., Rossnagel, P. & Stetter, K.O. (1995). Nature 376, 5758.
Hungate, R.E. (1969) A roll tube method for the cultivation of strict anaerobes. In Methods in Microbiology, ed. Norris, J.R. & Robbins, D.W., vol. 3B, pp. 117132. Academic Press, New York.
Kasting, J.F. & Catling, D. (2003). Annu. Rev. Astron. Astrophys. 41, 429463.
Khelaifia, S., Raoult, D. & Drancourt, M. (2013). PLoS ONE 8, e61563. doi: 10.1371/journal.pone.0061563.
Kneteman, A. (1957). J. Appl. Microbiol. 20, 101107.
Lammer, H. et al. (2009). Astron. Astrophys. Rev. 17, 181249.
Lane, D.J. (1991). Nucleic Acid Techniques in Bacterial Systematic. John Wiley & Sons, Chichester, pp. 115175.
La Scola, B., Khelaifia, S., Lagier, J.C. & Raoult, D. (2014). Eur. J. Microbiol. Infect. Dis. 33, 17811783.
Lim, D.S.S. et al. (2011). In Garry, W.B., and Bleacher, J.E., eds., Analogs for planetary exploration. Geol. Soc. Am. Spec. 483, 85116.
Marchesi, J.R., Sato, T., Weightman, A.J., Martin, T.A., Fry, J.C., Hiom, S.J., Dymock, D. & Wade, W.G. (1998). Appl. Environ. Microbiol. 64, 795799.
McKay, D.S., Gibson, E.K., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D.F., Maechling, C.R. & Zare, R.N. (1996). Science 273, 924930.
Miller, T.L. & Wolin, M.J. (1974). Appl. Microbiol. 27, 985987.
M'Leod, J.W. (1912). J. Pathol. Bacteriol. 17, 454457.
Moissl-Eichinger, C.S., Cockell, C.S. & Rettberg, P. (2016). FEMS Microbiol. Rev. 40, 722737.
Nichols, D.S., Greenhill, A.R., Shadbolt, C.T., Ross, T. & McMeekin, T.A. (1999). Appl. Environ. Microbiol. 65, 37573760.
Nisbet, E., Zahnle, K., Gerasimov, M.V., Helbert, J., Jaumann, R., Hofmann, B.A., Benzerera, K. & Westall, F. (2007). Space Sci. Rev. 129, 79121.
Osinski, G.R., Léveillé, R., Berinstain, A., Lebeuf, M. & Bamsey, M. (2006). Geosci. Can. 33, 175188.
Osterloo, M.M., Hamilton, V.E., Bandfield, J.L., Glotch, T.D., Baldridge, A.M., Christensen, P.R., Tornabene, L.L. & Anderson, F.S. (2008). Science 319, 16511654.
Payler, S.J. et al. (2016). Int. J. Astrobiol. 16, 114129.
Perry, R.D. & Fetherston, J.D. (1997). Clin. Microbiol. Rev. 10, 3566.
Pizzarello, S. (2007). Chem. Biodivers. 4, 680693.
Pizzarello, S. & Cronin, J.R. (2000). Geochim. Cosmochim. Acta 64, 329338.
Preston, L.J. & Dartnell, L.R. (2014). Planetary habitability: Lessons learned from terrestrial analogs. Int. J. Astrobiol. 13, 8198.
Sánchez-Andrea, I., Rodriguez, N., Amils, R. & Sans, J.L. (2011). Appl. Environ. Microbiol. 77, 60856093.
Sephton, M.A. (2002). Nat. Prod. Rep. 19, 292311.
Shock, E.L. & Schulte, M.D. (1998). J. Geophys. Res. 103, 285513–228527.
Skelley, A.M., Aubrey, A.D., Willis, P.A., Amashukeli, X., Ehrenfreund, P., Bada, J.L., Grunthaner, F.J. & Mathies, R.A. (2007). J. Geophys. Res. Biogeosci. 112, G4.
Smith, S.M., Davis-Street, J.E., Fesperman, J.V., Smith, M.D., Rice, B.L. & Zwart, S.R. (2004). J. Nutr. 134, 17651771.
Southam, G., Rothschild, L.J. & Westall, F. (2007). Space Sci. Rev. 129, 734.
Steele, A. et al. (2012). Science 337, 212215.
Stern, J.C. et al. (2015). Proc. Natl. Acad. Sci. USA 112, 42454250.
Stewart, E.J. (2012). J. Bacteriol. 194, 16, 41514160.
Stoker, C.R. et al. (2010). J. Geophys. Res. 115, article E00E20. doi: 10.1029/2009JE003421.
Tosca, J.N., McLennan, S.M., Clark, B., Grotzinger, J.P., Hurowitz, J.A., Knoll, A.H., Schröder, C. & Squyres, S.W. (2005). Earth Planet. Sci. Lett. 240, 122148.
Vaniman, D.T., Bish, D.L., Chipera, S.J., Fialips, C.I., Carey, J.W. & Feldman, W.C. (2004). Nature 431, 663665.
Webster, C.R. et al. (2015). Science 347, 415417.
Wells, C.L. & Wilkins, T.D. (1996). Clostridia – spore-forming anaerobic bacilli. In Medical Microbiology, 4th edn, ed. Baron, S. University of Texas Medical Branch, Galveston.
Westall, F., Loizeau, D., Foucher, F., Bost, N., Betrand, M., Vago, J. & Kminek, G. (2013). Astrobiology 13, 887897.
Zahnle, K., Arndt, N., Cockell, C.S., Halliday, A., Nisbet, E., Selsis, F. & Sleep, N.H. (2007). Space Sci. Rev. 129, 3578.

Keywords

Related content

Powered by UNSILO

Anaerobic microorganisms in astrobiological analogue environments: from field site to culture collection

  • C. S. Cockell (a1), P. Schwendner (a1), A. Perras (a2) (a3), P. Rettberg (a4), K. Beblo-Vranesevic (a4), M. Bohmeier (a4), E. Rabbow (a4), C. Moissl-Eichinger (a2), L. Wink (a2), V. Marteinsson (a5), P. Vannier (a5), F. Gomez (a6), L. Garcia-Descalzo (a6), P. Ehrenfreund (a7), E.P. Monaghan (a7), F. Westall (a8), F. Gaboyer (a8), R. Amils (a9), M. Malki (a9), R. Pukall (a10), P. Cabezas (a11) and N. Walter (a11)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.