Skip to main content

Biochip-based instruments development for space exploration: influence of the antibody immobilization process on the biochip resistance to freeze-drying, temperature shifts and cosmic radiations

  • G. Coussot (a1), T. Moreau, C. Faye (a2), F. Vigier, M. Baqué (a3), A. Le Postollec (a4) (a5), S. Incerti (a6), M. Dobrijevic (a4) (a5) and O. Vandenabeele-Trambouze (a7) (a8)...

Due to the diversity of antibody (Ab)-based biochips chemistries available and the little knowledge about biochips resistance to space constraints, immobilization of Abs on the surface of the biochips dedicated to Solar System exploration is challenging. In the present paper, we have developed ten different biochip models including covalent or affinity immobilization with full-length Abs or Ab fragments. Ab immobilizations were carried out in oriented/non-oriented manner using commercial activated surfaces with N-hydroxysuccinic ester (NHS-surfaces) or homemade surfaces using three generations of dendrimers (dendrigraft of poly L-lysine (DGL) surfaces). The performances of the Ab -based surfaces were cross-compared on the following criteria: (i) analytical performances (expressed by both the surface density of immobilized Abs and the amount of antigens initially captured by the surface) and (ii) resistance of surfaces to preparation procedure (freeze-drying, storage) or spatial constraints (irradiation and temperature shifts) encountered during a space mission. The latter results have been expressed as percentage of surface binding capacity losses (or percentage of remaining active Abs). The highest amount of captured antigen was achieved with Ab surfaces having full-length Abs and DGL-surfaces that have much higher surface densities than commercial NHS-surface. After freeze-drying process, thermal shift and storage sample exposition, we found that more than 80% of surface binding sites remained active in this case. In addition, the resistance of Ab surfaces to irradiation with particles such as electron, carbon ions or protons depends not only on the chemistries (covalent/affinity linkages) and strategies (oriented/non-oriented) used to construct the biochip, but also on the type, energy and fluence of incident particles. Our results clearly indicate that full-length Ab immobilization on NHS-surfaces and DGL-surfaces should be preferred for potential use in instruments for planetary exploration.

Corresponding author
Hide All
* These authors are now working in private companies.
Hide All
Angenendt, P. (2005). Progress in protein and antibody microarray technology. Drug Discov. Today 10(7), 503511.
Baqué, M., Le Postollec, A., Coussot, G., Moreau, T., Desvignes, I., Incerti, S., Moretto, P., Dobrijevic, M. & Vandenabeele-Trambouze, O. (2011). Biochip for astrobiological applications: investigation of low energy protons effects on antibody performances. Planet. Space Sci. 59(13), 14901497.
Baqué, M., Dobrijevic, M., Le Postollec, A., Moreau, T., Faye, C., Vigier, F., Incerti, S., Coussot, G., Caron, J. & Vandenabeele-Trambouze, O. (2015). Irradiation effects on antibody performance in the frame of biochip-based instruments development for space exploration. Int. J. Astrobiol. Accepted in September, 2015. doi:10.1017/S1473550415000555
Batalla, P., Fuentes, M., Mateo, C., Grazu, V., Fernandez-Lafuente, R. & Guisan, J.M. (2008). Covalent immobilization of antibodies on finally inert support surfaces through their surface regions having the highest densities in carboxyl groups. Biomacromolecules 9(8), 22302236.
Batalla, P., Mateo, C., Grazu, V., Fernandez-Lafuente, R. & Guisan, J.M. (2009). Immobilization of antibodies through the surface regions having the highest density in lysine groups on finally inert support surfaces. Process Biochem. 44, 365368.
Butler, J.E. (2000). Solid supports in enzyme-linked immunosorbent assay and other solid-phase immunoassays. Methods 22(1), 423.
Butler, J.E. (2004). Solid supports in enzyme-linked immunosorbent assay and other solid-phase immunoassays. Methods Mol. Med. 94, 333372.
Collet, H., Souaid, E., Cottet, H., Deratani, A., Boiteau, L., Dessalces, G., Rossi, J.C., Commeyras, A. & Pascal, R. (2010). An expeditious multigram-scale synthesis of lysine dendrigraft (DGL) polymers by aqueous N-carboxyanhydride polycondensation. Chemistry 16(7), 23092316.
Commeyras, A., Collet, H., Souaid, E., Cottet, H., Romestang, B. & Vandenabeele-Trambouze, O. (2006) procede de preparation de polylysines dendrimeres greffes. PCT/FR2006/000952, France.
Cottin, H. et al. (2014). Photochemical studies in low Earth orbit for organic compounds related to small bodies, Titan and Mars. Current and future facilities. Bull. Soc. R. Sci. Liège 84, 6073.
Coussot, G., Perrin, C., Moreau, T., Dobrijevic, M., Postollec, A.L. & Vandenabeele-Trambouze, O. (2011a) A rapid and reversible colorimetric assay for the characterization of aminated solid surfaces. Anal. Bioanal. Chem. 399(3), 10611069.
Coussot, G., Faye, C., Ibrahim, A., Ramonda, M., Dobrijevic, M., Postollec, A., Granier, F. & Vandenabeele-Trambouze, O. (2011b) Aminated dendritic surfaces characterization: a rapid and versatile colorimetric assay for estimating the amine density and coating stability. Anal. Bioanal. Chem. 399(6), 22952302.
de Diego-Castilla, G., Cruz-Gil, P., Mateo-Martí, E., Fernández-Calvo, P., Rivas, L.A. & Parro, V. (2011). Assessing antibody microarrays for space missions: effect of long-term storage, gamma radiation, and temperature shifts on printed and fluorescently labeled antibodies. Astrobiology 11(8), 759773.
Dixit, C.K. & Kaushik, A. (2012). Nano-structured arrays for multiplex analyses and Lab-on-a-Chip applications. Biochem. Biophys. Res. Commun. 419(2), 316320.
Faye, C., Chamieh, J., Moreau, T., Granier, F., Faure, K., Dugas, V., Demesmay, C. & Vandenabeele-Trambouze, O. (2012). In situ characterization of antibody grafting on porous monolithic supports. Anal. Biochem. 420(2), 147154.
Fuentes, M., Mateo, C., Fernández-Lafuente, R. & Guisán, J.M. (2006). Detection of polyclonal antibody against any area of the protein-antigen using immobilized protein-antigens: the critical role of the immobilization protocol. Biomacromolecules 7(2), 540544.
Gobet, F. et al. (2015). Experimental and Monte Carlo absolute characterization of a medical electron beam. Radiat. Meas 86, 1623.
Hassler, D.M. et al. (2012). The radiation assessment detector (RAD) investigation. Space Sci. Rev. 170(1), 503558.
Jonkheijm, P., Weinrich, D., Schröder, H., Niemeyer, C.M. & Waldmann, H. (2008). Chemical strategies for generating protein biochips. Angew. Chem. Int. Ed. Engl. 47(50), 96189647.
Jung, Y. et al. (2008). Recent advances in immobilization methods of antibodies on solid supports. Analyst 133, 697701.
Köhler, J. et al. (2014). Measurements of the neutron spectrum on the Martian surface with MSL/RAD. J. Geophys. Res.: Planet. 119(3), 594603.
Kozak, D., Surawski, P., Thoren, K.M., Lu, C.Y., Marcon, L. & Trau, M. (2009). Improving the signal-to-noise performance of molecular diagnostics with PEG-lysine copolymer dendrons. Biomacromolecules 10(2), 360365.
Le Postollec, A. et al. (2007). Development of a Biochip dedicated to planetary exploration. First step: resistance studies to space conditions. In Journées SF2A 2007 Semaine de l'Astrophysique Française 2007.
Le Postollec, A. et al. (2009a). Monte Carlo simulation of the radiation environment encountered by a biochip during a space mission to mars. Astrobiology 9(3), 311323.
Le Postollec, A., Coussot, G., Baqué, M., Incerti, S., Desvignes, I., Moretto, P., Dobrijevic, M. & Vandenabeele-Trambouze, O. (2009b) Investigation of neutron radiation effects on polyclonal antibodies (IgG) and fluorescein dye for astrobiological applications. Astrobiology 9(7), 637645.
Liu, X.H., Wang, H.K., Herron, J.N. & Prestwich, G.D. (2000). Photopatterning of antibodies on biosensors. Bioconjug. Chem. 11(6), 755761.
Martins, Z. (2011). In situ biomarkers and the Life Marker Chip. Astron. Geophys. 52(1), 1.341.35.
McKay, C.P. et al. (2013). The icebreaker life mission to mars: a search for biomolecular evidence for life. Astrobiology 13(4), 334353.
McKenna-Lawlor, S., Gonçalves, P., Keating, A., Reitz, G. & Matthiä, D. (2012). Overview of energetic particle hazards during prospective manned missions to Mars. Planet. Space Sci. 63–64, 123132.
Moreau, T., Faye, C., Baqué, M., Desvignes, I., Coussot, G., Pascal, R. & Vandenabeele-Trambouze, O. (2011). Antibody-based surfaces: rapid characterization using two complementary assays. Anal. Chim. Acta 706(2), 354360.
O'Neill, P.M. (2010). Badhwar–O'Neill galactic cosmic ray flux model. IEEE Trans. Nucl. Sci 57(6), 31483153.
Parro, V., Rivas, L.A. & Gómez-Elvira, J. (2008). Protein microarrays-based strategies for life detection in astrobiology. Space Sci. Rev. 135(2008), 293.
Parro, V. et al. (2011). SOLID3: a multiplex antibody microarray-based optical sensor instrument for in situ Life detection in planetary exploration. Astrobiology 11(1), 1528.
Peluso, P. et al. (2003). Optimizing antibody immobilization strategies for the construction of protein microarrays. Anal. Biochem. 312(2), 113124.
Qian, W. et al. (2000). Immobilization of antibodies on ultraflat polystyrene surfaces. Clin. Chem. 46(9), 14561463.
Romestand, B., Rolland, J.L., Commeyras, A., Coussot, G., Desvignes, I., Pascal, R. & Vandenabeele-Trambouze, O. (2010). Dendrigraft poly-L-lysine: a non-immunogenic synthetic carrier for antibody production. Biomacromolecules 11(5), 11691173.
Rusmini, F., Zhong, Z. & Feijen, J. (2007). Protein immobilization strategies for protein biochips. Biomacromolecules 8(6), 17751789.
Sims, M.R. et al. (2012). Development status of the life marker chip instrument for ExoMars. Planet. Space Sci. 72(1), 129137.
Singh, P., Moll, F., Lin, S.H., Ferzli, C., Yu, K.S., Koski, R.K., Saul, R.G. & Cronin, P. (1994). Starburst dendrimers: enhanced performance and flexibility for immunoassays. Clin. Chem. 40(9), 18451849.
Trevisiol, E., Le Berre-Anton, V., Leclaire, J., Pratviel, G., Caminade, A.M., Majoral, J.P., François, J.M. & Meunier, B. (2003). Dendrislides, dendrichips: a simple chemical functionalization of glass slides with phosphorus dendrimers as an effective means for the preparation of biochips. New J. Chem. 27(12), 17131719.
Vigier, F. et al. (2013). Preparation of the Biochip experiment on the EXPOSE-R2 mission outside the International Space Station. Adv. Space Res. 52(12), 21682179.
Wang, W., Singh, S., Zeng, D.L., King, K. & Nema, S. (2007). Antibody structure, instability, and formulation. J. Pharm. Sci. 96(1), 126.
Wängler, C., Moldenhauer, G., Eisenhut, M., Haberkorn, U. & Mier, W. (2008). Antibody-dendrimer conjugates: the number, not the size of the dendrimers, determines the immunoreactivity. Bioconjug. Chem. 19(4), 813820.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *