Skip to main content Accessibility help

Biological radiation dose from secondary particles in a Milky Way gamma-ray burst

  • Dimitra Atri (a1) (a2), Adrian L. Melott (a3) and Andrew Karam (a4)


Gamma-ray bursts (GRBs) are a class of highly energetic explosions emitting radiation in a very short timescale of a few seconds and with a very narrow opening angle. Although, all GRBs observed so far are extragalactic in origin, there is a high probability of a GRB of galactic origin beaming towards the Earth in the past ∼0.5 Gyr. We define the level of catastrophic damage to the biosphere as approximation 100 kJ m−2, based on Thomas et al. (2005a, b). Using results in Melott & Thomas (2011), we estimate the probability of the Earth receiving this fluence from a GRB of any type, as 87% during the last 500 Myr. Such an intense burst of gamma rays would ionize the atmosphere and deplete the ozone (O3) layer. With depleted O3, there will be an increased flux of Solar UVB on the Earth's surface with potentially harmful biological effects. In addition to the atmospheric damage, secondary particles produced by gamma ray-induced showers will reach the surface. Among all secondary particles, muons dominate the ground-level secondary particle flux (99% of the total number of particles) and are potentially of biological significance. Using the Monte Carlo simulation code CORSIKA, we modelled the air showers produced by gamma-ray primaries up to 100 GeV. We found that the number of muons produced by the electromagnetic component of hypothetical galactic GRBs significantly increases the total muon flux. However, since the muon production efficiency is extremely low for photon energies below 100 GeV, and because GRBs radiate strongly for only a very short time, we find that the biological radiation dose from secondary muons is negligible. The main mechanism of biological damage from GRBs is through Solar UVB irradiation from the loss of O3 in the upper atmosphere.



Hide All
Atri, D. & Melott, A.L. (2011a). Rad. Phys. Chem. 80.6, 701703.
Atri, D. & Melott, A.L. (2011b). Geophys. Res. Lett. 38(19), L19203.
Atri, D. & Melott, A.L. (2013). Astropart. Phys. in press
Atri, D., Melott, A.L. & Thomas, B.C. (2010). J. Cosmol. Astropart. Phys. 2010.05, 008.
Augusto, C.R.A. et al. (2013). Phys. Rev. D 87(10), 103003.
Band, D. et al. (1993). Astrophys. J. 413, 281292.
Cockell, C.S. (1998). J. Theor. Biol. 193, 717–29.
Dartnell, L.R. (2011). Astrobiology 11(6), 551582.
Dermer, C.D. & Holmes, J.M. (2005). Astrophys. J. Lett. 621, L28. doi: 10.1086/432663.
Dieter, H. (1998). CORSIKA: A Monte Carlo program to simulate extensive air showers. Forschungszentrum Karlsruhe Report, FZKA 6019.
Ejzak, L.M. et al. (2007). Astrophys. J. 654(1), 373.
Gaisser, T.K. (1991). Cosmic Rays and Particle Physics. Cambridge University Press, Cambridge.
Gao, S., Kashiyama, K. & Meszaros, P. (2013). ApJ. 772 L4. doi: 10.1088/2041-8205/772/1/L4.
Horvath, J.E. & Galante, D. (2012). Int. J. Astrobiol. 11(4), 279286. doi: 10.1017/S1473550412000304.
Karam, P.A. (2002). Health Phys. 82(4), 491499.
Melott, A.L. & Thomas, B.C. (2009). Paleobiology 35, 311320.
Melott, A.L. & Thomas, B.C. (2011). Astrobiology 11(4), 343361. doi: 10.1089/ast.2010.0603.
Melott, A.L. et al. (2004). Int. J. Astrobiol. 3(1), 5561.
Melott, A.L. et al. (2010). J. Geophys. Res. 115, E8, E08002.
Micke, A., Smith, H.H., Woodley, R.G. & Mashke, A. (1964). P. Natl. Acad. Sci. USA 52, 219221.
Nelson, W.R. (1966). Muon Production Calculations for Muon Shielding. Stanford Linear Accelerator Center, Stanford, CA. (SLAC-TN-66-37).
Overholt, A., Melott, A.L. & Atri, D. (2013). J. Geophys. Res.-Space DOI: 10.1002/jgra.50377.
Scalo, J. & Wheeler, J.C. (2002). Astrophys. J. 566(2), 723.
Serino, M. et al. (2012). GRB 120424A: MAXI/GSC detection of a burst. GRB Coordinates Network, Circular Service, 13261, 1.
Stevenson, G.R. (1983). Dose and Dose Equivalent from Muons, CERN TIS Divisional Report TISRP/Cr99,1983, Center for European Nuclear Research.
Thomas, B.C. et al. (2005a). Astrophys. J. Lett. 622(2), L153.
Thomas, B.C. et al. (2005b). Astrophys. J. 634(1), 509.
UNSCEAR (1996). Sources and Effects of Ionizing Radiation. (United Nations Science Committee on the Effects of Atomic Radiation) (1996). United Nations, New York.
Usoskin, I.G. & Gennady, A.K. (2006). J. Geophys. Res-Atmos. 111, D21, 19842012.


Related content

Powered by UNSILO

Biological radiation dose from secondary particles in a Milky Way gamma-ray burst

  • Dimitra Atri (a1) (a2), Adrian L. Melott (a3) and Andrew Karam (a4)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.