Skip to main content

BioRock: new experiments and hardware to investigate microbe–mineral interactions in space

  • Claire-Marie Loudon (a1), Natasha Nicholson (a1), Kai Finster (a2), Natalie Leys (a3), Bo Byloos (a3) (a4), Rob Van Houdt (a3), Petra Rettberg (a5), Ralf Moeller (a5), Felix M. Fuchs (a5), René Demets (a6), Jutta Krause (a6), Marco Vukich (a7), Alessandro Mariani (a7) and Charles Cockell (a1)...

In this paper, we describe the development of an International Space Station experiment, BioRock. The purpose of this experiment is to investigate biofilm formation and microbe–mineral interactions in space. The latter research has application in areas as diverse as regolith amelioration and extraterrestrial mining. We describe the design of a prototype biomining reactor for use in space experimentation and investigations on in situ Resource Use and we describe the results of pre-flight tests.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      BioRock: new experiments and hardware to investigate microbe–mineral interactions in space
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      BioRock: new experiments and hardware to investigate microbe–mineral interactions in space
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      BioRock: new experiments and hardware to investigate microbe–mineral interactions in space
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Hide All
Brim H., Heyndrickx M., de Vos P., Wilmotte A., Springael D., Schlege H.G. & Mergeay M. (1999). Syst. Appl. Microbiol. 22(2), 258268.
Brown R.B., Klaus D. & Todd P. (2002). Microgravity Sci. Technol. 13, 2429.
Bryce C.C., Le Bihan T., Martin S.F., Harrison J.P., Bush T., Spears B., Moore A., Leys N., Byloos B. & Cockell C.S. (2016). Environ. Microbiol. 18(4), 11101121.
Busch M. (2004). J. Brit. Interplanet. Soc. 57, 301305.
Cockell C.S. (2010). Trends Microbiol. 18, 308314.
Cockell C.S., Olsson K., Knowles F., Kelly L., Herrera A., Thorsteinsson T. & Marteinsson V. (2009). Geomicrobiol. J. 26, 491507.
Davies J.C. (2002). Paediatr. Respir. Rev. 3(2), 128134.
De Beer D., Stoodley P. & Lewandowski Z. (1997). Biotechnol. Bioeng. 53, 151158.
Diels L. & Mergeay M. (1990). Appl. Environ. Microbiol. 56(5), 14851491.
Donlan R.M. (2002). Emerging Infectious Dis. 8, 881890.
Gasset G., Tixador R., Eche B., Lapchine L., Moatti N., Toorop P. & Woldringh C. (1994). Res. Microbiol. 145, 111120.
Godia F., Albiol J., Montesinois J.L., Pérez J., Creus N., Cabello F., Mengual X., Montras A. & Lasseur C.H. (2002). J. Biotechnol. 99, 319330.
Goris J., De Vos P., Coenye T., Hoste B., Janssens D., Brim H., Diels L., Mergeay M., Kersters K. & Vandamme P. (2001). Int. J. Syst. Evol. Microbiol. 51, 17731782.
Hawser S.P., Baillie G.S. & Douglas L.J. (1998). J. Med. Microbiol. 47, 253256.
Hendrickx L. & Mergeay M. (2007). Curr. Opin. Microbiol. 10, 231237.
Horneck G., Klaus D.M. & Mancinelli R.L. (2010). Microbiol. Mol. Biol. Rev. 74, 121156.
Huang T., Gong W.Q., Bao G.M. & Lei S.M. (2013). Adv. Mater. Res. 823, 613617.
Kelly L. et al. (2011). Microb. Ecol. 62, 6979.
Kelly L.C., Cockell C.S., Piceno Y.M., Andersen G.L., Thorsteinsson T. & Marteinsson V. (2010). Microb. Ecol. 60(4), 740752.
Kim W. et al. (2013a). PLoS ONE 8, 4.
Kim W. et al. (2013b). BMC Microbiol. 13, 241.
Kral T.A., Bekkum C.R. & McKay C.P. (2004). Orig. Life Evol. Biosph. 34, 615626.
Krishnappa L., Dreisbach A., Otto A., Goosens V.J., Cranenburgh R.M., Harwood C.R., Becher D. & van Diji J.M. (2013). J. Proteome Res. 12, 41014110.
Kryzanowski T. & Mardon A. (1990). Can. Mining J. 111, 43.
Langevin S., Vincelette J., Bekal S. & Gaudreau C. (2011). J. Clin. Microbiol. 49(2), 744745.
Lasseur C.H., Brunet J., de Weever H., Dixon M., Dussap G., Godia F., Leys N., Mergeay M. & Van Der Straeten D. (2010). Gravit. Space Biol. 23, 312.
Leys N., Baatout S., Rosier C., Dams A., s'Heeren C., Wattiez R. & Mergeay M. (2009). Antonie Van Leeuwenhoek 96, 227245.
Liu Y.D., Cockell C.S., Wang G., Hu C.X., Chen L. & De Philippis R. (2008). Astrobiology 8, 7586.
Losick R. (2015). J. Biol. Chem. 290(5), 25292538.
Lytvynenko T. et al. (2006). Res. Microbiol. 157, 8792.
Maezato Y., Johnson T., McCarthy S., Dana K. & Blum P. (2012). J. Bacteriol. 194(24), 68566863.
Mautner M.N. (2002). Icarus 158, 7286.
McMahon S., Parnell J., Ponicka J., Hole M. & Boyce A. (2013). Astron. Geophys. 54, 1.171.21.
McSween H.Y. (2015). Am. Miner. 100, 23802395.
Mergeay M. & Van Houdt R. (eds) (2015). Springerbriefs in Biometals. Springer International Publishing, Switzerland.
Meyer T.R. & McKay C.P. (1989). J. Brit. Interplan. Soc. 42, 147160.
Michna R.H., Commichau F.M., Tödter D., Zschiedrich C.P. & Stülke J. (2014). Nucleic Acids Res. 42(Database issue), D692D698.
Mijnendonckx K., Provoost A., Ott C.M., Venkateswaran K., Mahillon J., Leys N. & Van Houdt R. (2013). Microb. Ecol. 65(2), 347360.
Millo D., Harnisch F., Patil S.A., Ly H.K., Schröder U. & Hildebrandt P. (2011). Angew. Chem. Int. Ed. 50, 26252627.
Moissl-Eichinger C., Cockell C.S. & Rettberg R. (2016). FEMS Microbiol. Rev. 40, 722737.
Montague M., McArthur G.H., Cockell C.S., Held J., Marshall W., Sherman L.A., Wang N., Nicholson W.L., Tarjan D.R. & Cumbers J. (2012). Astrobiology 12, 11351142.
Mora M., Perras A., Alekhova T.A., Wink L., Krause R., Aleksandrova A., Novozhilova T. & Moissl-Eichinger C. (2016). Microbiome 4(1), 65. doi: 10.1186/s40168-016-0217-7.
Naïtali M. & Briandet R. (2013). Biofilm – La société des microbes. Biofutur 341, 2333.
Nickerson C.A., Ott C.M., Wilson J.W., Ramamurthy R. & Pierson D.L. (2004). Microbiol. Mol. Biol. Rev. 68, 345361.
Olsson-Francis K. & Cockell C.S. (2010). Planet. Space Sci. 58, 12791285.
Olsson-Francis K., Van Houdt R., Mergeay M., Leys N. & Cockell C.S. (2010). Geobiology 8(5), 446456.
Paradiso R., De Micco V., Buonomo R., Aronne G., Barbieri G. & De Pascale S. (2014). Plant Biol. 16, 6978.
Pell M. & Worman A. (2008). Encyclopedia Ecol. 16, 426444.
Popa R., Smith A.R., Popa R., Boone J. & Fisk M. (2012). Astrobiology 12, 918.
Raafat K., Burnett J., Chapman T. & Cockell C.S. (2013). Astron. Geophys. 54, 5.105.12.
Rawlings D.E. (2005). Microbial Cell Factories 4, 115.
Rawlings D.E. & Johnson B. (2006). Biomining. Springer, Heidelberg.
Rawlings D.E. & Johnson B. (2007). Microbiology 153, 315324.
Reddy G.S.N. & Garcia- Pichel F. (2007). Int. J. Syst. Evol. Microbiol. 57, 10281034.
Roman M.C. & Minton- Summers S. (1998). Life Support Biosph. Sci. 5(1), 4551.
Ruzicka A., Snyder G.A. & Taylor L.A. (2001). Geochim. Cosmochim. Acta 65, 979997.
Sahl J.W. et al. (2008). Appl. Environ. Microbiol. 74(1), 143152.
Schippers A., Hedrich S., Vasters J., Drobe M., Sand W. & Willscher S. (2014). In Geobiotechnology I Metal-related Issues: Biomining: Metal recovery from ores with microorganisms , ed. Schippers S., Glombitza F. & Sand W., pp. 147. Springer, Heidelberg.
Song W., Ogawab N., Oguchic C.T., Hattad T. & Matsukuraa Y. (2007). CATENA 70(3), 275281.
Sonter M.J. (1997). Acta Astronaut. 41, 637647.
Templeton A.S., Knowles E.J., Eldridge D.L., Arey B.W., Dohnalkova A.C., Webb S.M., Bailey B.E., Tebo B.M. & Staudigel H. (2009). Nat. Geosci. 2, 872876.
Valdés J., Pedroso I., Quatrini R., Dodson R.J., Tettelin H., Blake R., Eisen J.A. & Holmes D.S. (2008). BMC Genomics 9, 597. doi: 10.1186/1471-2164-9-597.
Van Houdt R., Monsieurs P., Mijnendonckx K., Provoost A., Janssen A., Mergeay M. & Leys N. (2012). BMC Genomics 13, 111.
Wu L.L., Jacobson A.D., Chen H.C. & Hausner M. (2007). Geochim. Cosmochim. Acta 71, 22242239.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 71
Total number of PDF views: 170 *
Loading metrics...

Abstract views

Total abstract views: 291 *
Loading metrics...

* Views captured on Cambridge Core between 24th July 2017 - 24th January 2018. This data will be updated every 24 hours.