Skip to main content
×
Home
    • Aa
    • Aa

Could photosynthesis function on Proxima Centauri b?

  • Raymond J. Ritchie (a1), Anthony W.D. Larkum (a2) and Ignasi Ribas (a3)
Abstract
Abstract

Could oxygenic and/or anoxygenic photosynthesis exist on planet Proxima Centauri b? Proxima Centauri (spectral type – M5.5 V, 3050 K) is a red dwarf, whereas the Sun is type G2 V (5780 K). The light regimes on Earth and Proxima Centauri b are compared with estimates of the planet's suitability for Chlorophyll a (Chl a) and Chl d-based oxygenic photosynthesis and for bacteriochlorophyll (BChl)-based anoxygenic photosynthesis. Proxima Centauri b has low irradiance in the oxygenic photosynthesis range (400–749 nm: 64–132 µmol quanta m−2 s−1). Much larger amounts of light would be available for BChl-based anoxygenic photosynthesis (350–1100 nm: 724–1538 µmol quanta m−2 s−1). We estimated primary production under these light regimes. We used the oxygenic algae Synechocystis PCC6803, Prochlorothrix hollandica, Acaryochloris marina, Chlorella vulgaris, Rhodomonas sp. and Phaeodactylum tricornutum and the anoxygenic photosynthetic bacteria Rhodopseudomonas palustris (BChl a), Afifella marina (BChl a), Thermochromatium tepidum (BChl a), Chlorobaculum tepidum (BChl a + c) and Blastochloris viridis (BChl b) as representative photosynthetic organisms. Proxima Centauri b has only ≈3% of the PAR (400–700 nm) of Earth irradiance, but we found that potential gross photosynthesis (P g) on Proxima Centauri b could be surprisingly high (oxygenic photosynthesis: earth ≈0.8 gC m−2 h−1; Proxima Centauri b ≈0.14 gC m−2 h−1). The proportion of PAR irradiance useable by oxygenic photosynthetic organisms (the sum of Blue + Red irradiance) is similar for the Earth and Proxima Centauri b. The oxygenic photic zone would be only ≈10 m deep in water compared with ≈200 m on Earth. The P g of an anoxic Earth (gC m−2 h−1) is ≈0.34–0.59 (land) and could be as high as ≈0.29–0.44 on Proxima Centauri b. 1 m of water does not affect oxygenic or anoxygenic photosynthesis on Earth, but on Proxima Centauri b oxygenic P g is reduced by ≈50%. Effective elimination of near IR limits P g by photosynthetic bacteria (<10% of the surface value). The spectrum of Proxima Centauri b is unfavourable for anoxygenic aquatic photosynthesis. Nevertheless, a substantial aerobic or anaerobic ecology is possible on Proxima Centauri b. Protocols to recognize the biogenic signature of anoxygenic photosynthesis are needed.

Copyright
Corresponding author
e-mail: raymond.r@phuket.psu.ac.th and raymond.ritchie@uni.sydney.edu.au
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
UNKNOWN
Supplementary Materials

Ritchie supplementary material
Ritchie supplementary material 1

 Unknown (75 KB)
75 KB

Metrics

Full text views

Total number of HTML views: 5
Total number of PDF views: 27 *
Loading metrics...

Abstract views

Total abstract views: 275 *
Loading metrics...

* Views captured on Cambridge Core between 18th July 2017 - 24th August 2017. This data will be updated every 24 hours.