Skip to main content
×
Home
    • Aa
    • Aa

Observational signatures of self-destructive civilizations

  • Adam Stevens (a1) (a2), Duncan Forgan (a3) and Jack O'Malley James (a3) (a4)
Abstract
Abstract

We address the possibility that intelligent civilizations that destroy themselves could present signatures observable by humanity. Placing limits on the number of self-destroyed civilizations in the Milky Way has strong implications for the final three terms in Drake's Equation, and would allow us to identify which classes of solution to Fermi's Paradox fit with the evidence (or lack thereof). Using the Earth as an example, we consider a variety of scenarios in which humans could extinguish their own technological civilization. Each scenario presents some form of observable signature that could be probed by astronomical campaigns to detect and characterize extrasolar planetary systems. Some observables are unlikely to be detected at interstellar distances, but some scenarios are likely to produce significant changes in atmospheric composition that could be detected serendipitously with next-generation telescopes. In some cases, the timing of the observation would prove crucial to detection, as the decay of signatures is rapid compared with humanity's communication lifetime. In others, the signatures persist on far longer timescales.

Copyright
Corresponding author
e-mail: dhf3@st-andrews.ac.uk
References
Hide All
BadescuV. & CathcartR.B. (2000). Stellar engines for Kardashev's type II civilisations. J. Br. Interplanet. Soc. 53, 297306.
BallJ.A. (1973). The zoo hypothesis. Icarus 19, 347349.
BarnesJ.W. & FortneyJ.A. (2004). Transit detectability of ring systems around extrasolar giant planets. Astrophys. J. 616, 11931203.
BarstowJ.K., AigrainS., IrwinP.G.J., KendrewS. & FletcherL.N. (2015). Transit spectroscopy with James Webb Space Telescope: systematics, starspots and stitching. Mon. Not. R. Astron. Soc. 448, 25462561.
BarthC.A., StewartA.I. & HordC.W. (1972). Mariner 9 ultraviolet spectrometer experiment: Mars airglow spectroscopy and variations in Lyman alpha. Icarus 17, 457468. http://www.sciencedirect.com/science/article/pii/0019103572900115
BaskinN.J. et al. (2013). Secondary eclipse photometry of the Exoplanet WASP-5b with warm spitzer. Astrophys. J. 773, 5. article id. 124.
BatalhaN., KaliraiJ.S., LunineJ.I. & MandellA. (2014). Transiting exoplanet simulations with the James Webb space telescope. In presented at American Astronomical Society, AAS Meeting #223, #325.03
BergerE. (2013). Short duration gamma ray bursts. Annu. Rev. Astron. Astrophys. 52, 43105.
BostromN. (2003). Are we living in a computer simulation? Philos. Quart. 53(211), 243255.
BrinG.D. (1983). The Great Silence – the Controversy Concerning Extraterrestrial Intelligent Life. Quarterly Journal of the Royal Society 24, 283309.
BurattiB.J., HillierJ.K. & WangM. (1996). The lunar opposition surge: observations by clementine. Icarus 124, 490499.
BurrowsA.S. (2014). Spectra as windows into exoplanet atmospheres. Proc. Nat. Acad. Sci. 111(35), 1260112609.
CanupR.M. (2008). Lunar-forming collisions with pre-impact rotation. Icarus 196, 518538.
CharbonneauD. et al. (2005). Detection of thermal emission from an extrasolar planet. Astrophys. J. 626, 523529.
CirkovicM.M. (2009). Fermi's paradox: the last challenge for copernicanism? Serbian Astron. J. 178, 120.
CodyA.M. & SasselovD. (2004). Stellar evolution with enriched surface convection zones. I. General effects of planet consumption. Astrophys. J. 622, 704713.
CrawfordI. & BaxterS. (2015). The lethality of interplanetary warfare: a fundamental constraint on extraterrestrial liberty. In The Meaning of Liberty Beyond Earth, ed. CockellC.S., pp. 187198. Springer International Publishing, London.
DickS.J. (2003). Cultural evolution, the postbiological universe and SETI. Int. J. Astrobiol. 2, 6574.
Domagal-GoldmanS.D., MeadowsV.S., ClaireM.W. & KastingJ.F. (2011) Using biogenic sulfur gases as remotely detectable biosignatures on anoxic planets. Astrobiology 11, 419441.
DressingC.D. & CharbonneauD. (2013). The occurrence rate of small planets around small stars. Astrophys. J. 767, article id. 95.
DrexlerE. (1986). Engines of Creation: The Coming Era of Nanotechnology, ISBN-10 0385199732.
DysonF.J. (1960). Search for artificial stellar sources of infrared radiation. Science 131, 16671668.
FischerG. et al. (2011). Overview of Saturn Lightning Observations. In Proc. of the 7th Int. Workshop on Planetary, Solar and Heliospheric Radio Emissions (PRE VII), held at Graz, Austria, 15–17 September, 2010, pp. 135–144.
FishmanG.J. & MeeganC.A. (1995). Gamma ray bursts. Annu. Rev. Astron. Astrophys. 33, 415468.
FerrinI. (2014). The impending demise of comet C/2012 S1 (ISON). Planet. Space Sci. 96, 114119.
FeynmanR.P. (1960). There's plenty of room at the bottom. Engineering and Science 23(5), 2236.
FoggM.J. (1987). Temporal aspects of the interaction among the first galactic civilizations The ‘Interdict Hypothesis. Icarus 69, 370384.
ForganD.H. (2011). Spatio-temporal constraints on the zoo hypothesis, and the breakdown of total hegemony. Int. J. Astrobiol. 10, 341347.
Freitas (2000). Some Limits to Global Ecophagy by Biovorous Nanoreplicators, with Public Policy Recommendations. Report to the Foresight Institute. http://www.rfreitas.com/Nano/Ecophagy.htm (accessed 7 July 14).
GalamaT.J. et al. (1998). Unusual Supernova in the error box of the gamma ray burst of 25th April 1998. Nature 395, 670672.
GaudiB.S., ChangH.Y. & CheonghoH. (2003). Probing structures of distant extrasolar planets with microlensing. Astrophys. J. 586, 527539.
GoudieA.S. & MiddletonN.J. (2001). Saharan dust storms: nature and consequences. Earth-Sci. Rev. 56, 179204.
GreerR.G.H. et al. (1986). ETON 1: a data base pertinent to the study of energy transfer in the oxygen nightglow. Planet. Space Sci. 34(9), 771788.
GrenfellJ.L., GebauerS., ParisP.v., GodoltM. & RauerH. (2014). Sensitivity of biosignatures on Earth-like planets orbiting in the habitable zone of cool M-dwarf Stars to varying stellar UV radiation and surface biomass emissions. Planet. Space Sci. 98, 6676.
GroombridgeB. & JenkinsM.D. (2002). Global Biodiversity: Earth's Living Resources in the 21st Century. University of California Press, Berkeley and Los Angeles, California.
HairT.W. (2011). Temporal dispersion of the emergence of intelligence: an inter-arrival time analysis. Int. J. Astrobiol. 10, 131135.
HansonR. (1998). The great filter: are we almost past it? http://hanson.gmu.edu/greatfilter.html (accessed 09/07/2014)
HessW.N. (1964). The Effects of High Altitude Explosions. National Aeronautics and Space Administration, Washington, DC. http://searchworks.stanford.edu/view/8599208
HowardA.W. et al. (2004). Search for nanosecond optical pulses from nearby solar-type stars. ApJ 613, 12701284.
ImanakaT., FukutaniS., YamamotoM., SakaguchiA. & HoshiM. (2006). Radiological situation in the vicinity of semipalatinsk nuclear test site: dolon, mostik, cheremushka and budene settlements. J. Radiat. Res. 47(Suppl.), A121A127. http://jrr.oxfordjournals.org/content/47/Suppl_A/A101.full.pdf
JacksonR.J., RamsayA.J., ChristensenC.D., BeatonS., HallD.F. & RamshawI.A. (2001). Expression of mouse interleukin-4 by a recombinant ectromelia virus suppresses cytolytic lymphocyte responses and overcomes genetic resistance to smallpox. J. Virol. 75, 12051210.
JacobsonS.A. & MorbidelliA. (2014). Lunar and terrestrial planet formation in the grand tack scenario. Philos. Trans. R. Soc. A, 372, article id 0174
JohnsonN.L., StansberyE., WhitlockD.O., AbercrombyK.J. & ShootsD. (2008). History of On-Orbit Satellite Fragmentations, 14th edn. NASA Orbital Debris Program Office NASA/TM-2008–214779, Houston.
KurzweilR. (1999). The Age of Spiritual Machines: When Computers Exceed Human Intelligence. Penguin Books, New York.
KardashevN. (1964). Transmission of information by extraterrestrial civilizations. Soviet Astron. 8, 217221.
KesslerD.J. & Cour-PalaisB.G. (1978). Collision frequency of artificial satellites: the creation of a debris belt. J. Geophys. Res. 83, 26372646.
KopparapuR.K. et al. (2013). Habitable zones around main sequence stars: new estimates. Astrophys. J. 765, article id 131.
KouveliotouC., MeeganC.A., FishmanG.J., BhatN.P., BriggsM.S., KoshutT.M., PaciesasW.S. & PendletonG.N. (1993). Identification of two classes of gamma-ray bursts. Astrophys. J. Lett. 413, L101L104.
KrasnopolskyV.A. (1985). Oxygen emissions in the night airglow of the Earth, Venus and Mars. Planet. Space Sci. 34, 511518.
KreidbergL., BeanJ.L., DesertJ.-M., BennekeB., DemingD., StevensonK.B., SeagerS., Berta-ThompsonZ., SeifahrtA. & HomeierD. (2014). Clouds in the atmosphere of the super-Earth exoplanet GJ1214b. Nature 505(7481), 6972.
KristensenH.M. & NorrisR.M. (2014). Worldwide deployments of nuclear weapons. Bulletin of the Atomic Scientists August 26, 2014 0096340214547619
KrivovA.V., EiroaC., LöhneT., MarshallJ.P., MontesinosB., del BurgoC., AbsilO., ArdilaD., AugereauJ.-C. & BayoA., et al. (2013). Herschel's cold debris disks: background galaxies or quiescent rims of planetary systems? Astrophys. J. 772, article id 32.
LiL.S., LinD.N.C. & LiuX.W. Extent of pollution in planet-bearing stars. Astrophys. J. 685(2), 12101219.
LinH.W., AbadG.G. & LoebA. (2014). Detecting industrial pollution in the atmospheres of earth-like exoplanets. Astrophys. J. 792, 4. article id L7.
LiouJ.C. (2006). Collision activities in the future orbital debris environment. Adv. Space Res. 38, 21022106.
MadhusudhanN., KnutsonH., FortneyJ. & BarmanT. (2014). Exoplanetary atmospheres. In Protostars and Planets VI, ed. BeutherH., KlessenR., DullemondC. & HenningTh. University of Arizona Press, Tucson, 739762.
MamajekE.E., CuillenA.C., PecautM.J., MoolekampF., ScottE.L., KenworthyM.A., Collier-CameronA. & ParleyN. (2015). Planetary construction zones in occultation: discovery of an extrasolar ring system transiting a young sun-like star and future prospects for detecting eclipses by circumsecondary and circumplanetary disks. Astrophys. J. 143, 15, article 72.
MasonJ., StuplJ., MarshallW. & LevitC. (2011). Orbital debris-debris collision avoidance. Adv. Space Res. 48, 16431655.
Meléndez-AlviraD.J., MeierR.R., PiconeJ.M., FeldmanP.D. & McLaughlinB.M. (1999). Analysis of the oxygen nightglow measured by the Hopkins Ultraviolet Telescope: implications for ionospheric partial radiative recombination rate coefficients. J. Geophys. Res. 104(A7), 1490114913. doi: 10.1029/1999JA900136.
MisraA., MeadowsV., ClaireM. & CrispD. (2014). Using dimers to measure biosignatures and atmospheric pressures for terrestrial planets. Astrobiology 14(2), 6786.
MustillA.J. & WyattM.C. (2011). A general model of resonance capture in planetary systems: first- and second-order resonances. MNRAS 413, 554572.
NicholsonA. & ForganD.H. (2013). Slingshot dynamics for self-replicating probes and the effect on exploration timescales. IJA 12, 337344.
O'Malley-JamesJ., GreavesJ.S., RavenJ.A. & CockellC.S. (2013). Swansong Biospheres: refuges for life and novel microbial biospheres on terrestrial planets near the end of their habitable lifetimes. Int. J. Astrobiol. 12, 99112.
PetiguraE.A., HowardA.W. & MarcyG.W. (2013). Prevalence of Earth-size planets orbiting Sun-like stars. PNAS 110, 1927319278.
PhoenixC. & DrexlerE. (2004). Safe exponential manufacturing. Nanotechnology 15, 869872.
(2003). Biosignatures of early earths. Astrobiology 3, 471486.
RampadarathH., MorganJ.S., TingayS.J. & TrottC.M. (2012). The first very long baseline interferometric SETI experiment. Astron. J. 144(2), article id. 38.
RauerH. et al. (2014). The PLATO 2.0 mission. Exp. Astron. 38, 249330.
ReinesA.E. & MarcyG.W. (2002). Optical search for extraterrestrial intelligence: a spectroscopic search for laser emission from nearby stars. Publ. Astron. Soc. Pac. 114, 416426.
RichardM., KronigL., BelloniF., RossiS., GassV., AraomiS., GavrilovichI., SheaH., PaccolatC. & ThiranJ.P. (2013). Uncooperative Rendezvous and Docking for MicroSats: The Case for CleanSpace One, RAST paper. http://space.epfl.ch/ (accessed 10/07/14)
RichardA.K. (1999). For radioactive waste from weapons, a home at last. Science 283(5408), 16261628.
RickerG.R. et al. (2014). Transiting Exoplanet Survey Satellite (TESS). Proc. SPIE 9143, 15. id. 914320.
RobockA., OmanL. & StenchikovG.L. (2007). Nuclear winter revisited with a modern climate model and current nuclear arsenals: still catastrophic consequences. J. Geophys. Res. 112, D13107.
RothwellP., WagerJ.H. & SayersJ. (1963). Effect of the Johnston Island high-altitude nuclear explosion on the ionization density in the topside ionosphere. J. Geophys. Res. 68, 947949.
SakaguchiA., YamamotoM., HoshiM., ImanakaT., ApsalikovK.N. & GusevB.I. (2006). External radiation in dolon village due to local fallout from the first USSR atomic bomb test in 1949. J. Radiat. Res. 47(Suppl.), A101A116.
SchneiderJ. et al. (2010). The far future of exoplanet direct characterization. Astrobiology 10, 121126.
SiemionA.P.V. et al. (2013). A 1.1–1.9 GHz SETI survey of the kepler field. I. A search for narrow-band emission from select targets. Astrophys. J. 767, article id. 94.
ShklovskyJ.S. & SaganC. (1966). Intelligent Life in the Universe. Holden-Day, San Francisco.
TanvirN. (2013). The highest redshift gamma ray bursts. In Proc. of the Seventh Huntsville Gamma Ray Burst Symp., Tennesse, April 2013.
UdryS. et al. (2014). Exoplanet Science with the European Extremely Large Telescope. The Case for Visible and Near-IR Spectroscopy at High Resolution, White Paper, arXiv:1412.1048.
VukoticB. & CirkovicM.M. (2008). Neocatastrophism and the Milky Way Astrobiological Landscape. Serbian Astron. J. 176, 7179.
WalpoleS.C., Prieto-MerinoD., EdwardsP., ClelandJ., StevensG. & RobertsI. (2012). The weight of nations: an estimation of adult human biomass. BMC Public Health 12, 439.
WaltersC., HooverR.A. & KotraR.K. (1980). Interstellar colonization: a new parameter for the Drake equation? Icarus 41, 193197.
WalthamD. (2015). Lucky Planet – Why Earth is Exceptional, and what that Means for Life in the Universe. Icon Books.
WardP. & BrownleeD. (2000). Rare Earth: Why Complex Life is Uncommon in the Universe.
WebbP. (2002). If the Universe Is Teeming with Aliens - Where Is Everybody?: Fifty Solutions to Fermi's Paradox and the Problem of Extraterrestrial Life. Copernicus, ISBN-10 0387955011.
WeissL. (2011). The 1979 South Atlantic Flash: The Case for an Israeli Nuclear Test. Stanford University. http://www.npolicy.org/article_file/The_1979_South_Atlantic_Flash__The_Case_for_an_Israeli_Nuclear_Test.pdf (accessed 17 April 2012).
WhitmireD.P. & WrightD.P. (1980). Nuclear waste spectrum as evidence of technological extraterrestrial civilizations. Icarus 42, 149156.
WrightJ.T., MullanB., SigurdssonS. & PovichM.S. (2014). The G-Hat infrared search for extraterrestrial civilizations with large energy supplies. I. Background and justification. Astrophys. J. 792, 16, article id 26.
ZuluagaJ.I., KippingD.M., SucerquiaM. & AlvaradoJ.A. (2015). A novel method for identifying exoplanetary rings. Astrophys. J. 803(1), article id. L14, 7 pp.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 22
Total number of PDF views: 108 *
Loading metrics...

Abstract views

Total abstract views: 865 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd October 2017. This data will be updated every 24 hours.