Skip to main content
×
Home
    • Aa
    • Aa

Does the planetary dynamo go cycling on? Re-examining the evidence for cycles in magnetic reversal rate

  • Adrian L. Melott (a1), Anthony Pivarunas (a2), Joseph G. Meert (a2) and Bruce S. Lieberman (a3)
Abstract
Abstract

The record of reversals of the geomagnetic field has played an integral role in the development of plate tectonic theory. Statistical analyses of the reversal record are aimed at detailing patterns and linking those patterns to core–mantle processes. The geomagnetic polarity timescale is a dynamic record and new paleomagnetic and geochronologic data provide additional detail. In this paper, we examine the periodicity revealed in the reversal record back to 375 million years ago (Ma) using Fourier analysis. Four significant peaks were found in the reversal power spectra within the 16–40-million-year range (Myr). Plotting the function constructed from the sum of the frequencies of the proximal peaks yield a transient 26 Myr periodicity, suggesting chaotic motion with a periodic attractor. The possible 16 Myr periodicity, a previously recognized result, may be correlated with ‘pulsation’ of mantle plumes and perhaps; more tentatively, with core–mantle dynamics originating near the large low shear velocity layers in the Pacific and Africa. Planetary magnetic fields shield against charged particles, which can give rise to radiation at the surface and ionize the atmosphere, which is a loss mechanism particularly relevant to M stars. Understanding the origin and development of planetary magnetic fields can shed light on the habitable zone.

Copyright
Corresponding author
email: melott@ku.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

D. Atri (2013). Did high-energy astrophysical sources contribute to Martian atmospheric loss? Mon. Not. R. Astron. Soc. Lett. 463, L64L68. doi: 10.1093/mnrasl/slw155.

D. Atri (2017). Modeling stellar proton event-induced particle radiation dose on close-in exoplanets. Mon. Not. R. Astron. Soc. Lett. 465, L34L38. doi: 10.1093/mnrasl/slw199.

D. Atri , B. Hariharan & J. Greiβmeier (2013). Galactic cosmic-ray induced radiation dose on terrestrial exoplanets. Astrobiology 13, 910919.

A.J. Biggin , B. Steinberger , J. Aubert , N. Suttie , R. Holme , T.H. Torsvik , D.G. van der Meer & D.J.J. van Hinsbergen (2012). Possible links between long-term geomagnetic variations and whole-mantle convection processes. Nat. Geosci. 5, 526533.

D.I. Black (1967). Cosmic ray effects and faunal extinctions at geomagnetic field reversals. Earth Planet. Sci. Lett. 3, 225236.

P. Bloomfield (2000). Fourier Analysis of Time Series: an Introduction, 2nd edn. John Wiley & Sons, Wiley Interscience Publications, New York, NY.

V. Carbone , L. Sorriso-Valvo , A. Vecchio , F. Lepreti , P. Veltri , P. Harabaglia & I. Guerra (2006). Clustering of polarity reversals of the geomagnetic field. Phys. Rev. Lett. 96, 128501.

C. Constable (2000). On rates of occurrence of geomagnetic reversals. Phys. Earth Planet. Inter. 118, 181193.

J.W. Cooley & J.W. Tukey (1965). An algorithm for the machine calculation of complex Fourier series. Math. Comp. 19, 297301.

V. Courtillot & J. Besse (1987). Magnetic field reversals, polar wander, and core-mantle coupling. Science 237, 11401147.

A.V. Cox , R.R. Doell & G.B. Dalrymple (1963a). Geomagnetic polarity epochs and Pleistocene geochronometry. Nature 198, 10491051.

A. Cox , R.R. Doell & G.B. Darymple (1964). Geomagnetic polarity epochs. Science 143, 351352.

P.E. Driscoll & D.A.D. Evans (2016). Frequency of Proterozoic geomagnetic superchrons. Earth Planet. Sci. Lett. 437, 914.

K. Glassmeier & J. Vogt (2010). Magnetic polarity transitions and biospheric effects: historical perspective and current developments. Space Sci. Rev. 155, 387410.

J.D. Hays (1971). Faunal extinctions and reversals of the earth's magnetic field. Geol. Soc. Am. Bull. 82, 24332447.

K. Herbst , A. Kopp & B. Heber (2013). Influence of the terrestrial magnetic field geometry on the cutoff rigidity of cosmic ray particles. Ann. Geophys. 31, 16371643.

R.L. Larson (1991). Geological consequences of superplumes. Geology 19, 963966.

R.L. Larson & P. Olson (1991). Mantle plumes control magnetic reversal frequency. Earth Planet. Sci. Lett. 107, 437447.

B.S. Lieberman & A.L. Melott (2007). Considering the case for biodiversity cycles: reexamining the evidence for periodicity in the fossil record. PLoS ONE 2, 19.

B.S. Lieberman & A.L. Melott (2012). Whilst this planet goes cycling on: what role for periodic astronomical phenomena in large scale patterns in the history of life? In Earth and Life: Global Biodiversity, Extinction Intervals, and Biogeographic Perturbations through Time, International Year of Planet Earth, ed. J. Talent , pp. 3750. Springer, Berlin.

D.E. Loper , K. McCartney & G. Buzyna (1988). A model of correlated episodicity in magnetic-field reversals, climate, and mass extinctions. J. Geol. 96, 115.

T.M. Lutz (1985). The magnetic reversal record is not periodic. Nature 317, 404407.

T.M. Lutz & G.S. Watson (1988). Effects of long-term variation on the frequency spectrum of the geomagnetic reversal record. Nature 334, 240242.

P. Madrigal , E. Gazel , K.E. Flores , M. Bizimis & B. Jicha (2016). Record of massive upwellings from the Pacific low shear velocity province. Nat. Commun. 7, 13309. doi: 10.1038/ncomms13309.

W. Marzocchi & F. Mulargia (1992). The periodicity of geomagnetic reversals. Phys. Earth Planet. Inter. 73, 222228.

A. Mazaud & C. Laj (1991). The 15 m.y. geomagnetic reversal periodicity: a quantitative test. Earth Planet. Sci. Lett. 107, 689696.

A. Mazaud , C. Laj , L. de Seze & K.L. Verosub (1983). 15-Myr periodicity in the frequency of geomagnetic reversals since 100 Ma. Nature 304, 328330.

C. McCabe & R.D. Elmore (1989). The occurrence and origin of Late Paleozoic remagnetization in the sedimentary rocks of North America. Rev. Geophys. 27, 471494.

P.L. McFadden (1984a). Statistical tools for the analysis of geomagnetic reversals. J. Geophys. Res. 89, 33633372.

P.L. McFadden (1984b). 15-Myr periodicity in the frequency of geomagnetic reversals since 100 Ma. Nature 311, 396.

P.L. McFadden (1987). “A periodicity of magnetic reversals?” Comment by P.L. McFadden. Nature 330, 27.

P.L. McFadden & R.T. Merrill (1984). Lower mantle convection and geomagnetism. J. Geophys. Res. 89, 33543362.

P.L. McFadden , R.T. Merrill , W. Lowrie & D.V. Kent (1987). The relative stabilities of the reverse and normal polarity states of the earth's magnetic field. Earth Planet. Sci. Lett. 82, 373383.

J.G. Meert , N.M. Levashova , M.L. Bazhenov & E. Landing (2016). Rapid changes of magnetic field polarity in the late Ediacaran: linking the Cambrian evolutionary radiation and increased UV-B radiation. Gondwana Res. 34, 149157.

A.L. Melott & R.K. Bambach (2011a). A ubiquitous ~62-Myr periodic fluctuation superimposed on general trends in fossil biodiversity. I. Documentation. Paleobiology 37, 92112.

A.L. Melott & R.K. Bambach (2011b). A ubiquitous ~62 Myr periodic fluctuation superimposed on general trends in fossil biodiversity: II. Evolutionary dynamics associated with periodic fluctuation in marine diversity. Paleobiology 37, 383408.

A.L. Melott & R.K. Bambach (2013). Do periodicities in extinction – with possible astronomical connections – survive a revision of the geological timescale? Astrophys. J. 773, 610. doi: 10.1088/0004-637X/773/1/6.

A.L. Melott & R.K. Bambach (2014). Analysis of periodicity of extinction using the 2012 geological time scale. Paleobiology 40, 177196.

A.L. Melott , R.K. Bambach , K.D. Petersen & J.M. McArthur (2012). A ~60 Myr periodicity is common to marine 87Sr/86Sr, fossil biodiversity, and large-scale sedimentation: what does the periodicity reflect? J. Geology 120, 217226.

R.T. Merrill & P.L. McFadden (1994). Geomagnetic field stability: reversal events and excursions. Earth Planet. Sci. Lett. 121, 5769.

R. Mjelde (2016). Late Cenozoic global pulsation in hotspot magmatism and their possible interplay with plate tectonics, Earth's core and climate. Curr. Sci. 111, 823835.

R. Mjelde & J.I. Faleide (2009). Variation of Icelandic and Hawaiian magmatism: evidence for co-pulsation of mantle plumes? Mar. Geophys. Res. 30, 6172.

P. Olson & H. Amit (2015). Mantle superplumes induce geomagnetic superchrons. Front. Earth Sci. 3, 111.

N.D. Opdyke & J.E.T. Channell (1996). Magnetic Stratigraphy. Academic Press, San Diego.

M.R. Rampino (2015). Disc dark matter in the galaxy and potential cycles of extraterrestrial impacts, mass extinctions and geological events. Mon. Not. R. Astron. Soc. 448, 18161820.

M.R. Rampino & A. Prokoph (2013). Are mantle plumes periodic? Eos 94, 113114. doi: 10.1002/2013EO120001.

D.M. Raup (1985b). Rise and fall of periodicity. Nature 317, 384385.

D.M. Raup & J.J. Sepkoski Jr. (1984). Mass extinctions in the marine fossil record. Paleobiology 14, 109125.

R.A. Rohde & R.A. Muller (2005). Cycles in fossil diversity. Nature 434, 208210.

W.M. Schaffer , B.E. Kendall , C.W. Tidd & L.F. Olsen (1993). Transient periodicity and episodic predictability in biological dynamics. IMA J. Math. Med. Biol. 10, 227247.

L. Sorriso-Valvo , F. Stefani , V. Carbone , G. Nigro , F. Lepreti , A. Vechhio & P. Veltri (2007). A statistical analysis of polarity reversals of the geomagnetic field. Phys. Earth Planet. Inter. 164, 197216.

R.B. Stothers (1986). Periodicity of the earth's magnetic reversals. Nature 322, 444446.

J.A. Tarduno , R.D. Cottrell , W.J. Davis , F. Nimmo & R.K. Bono (2015). A Hadean to Paleoarchean geodynamo recorded by single zircon crystals. Science 349, 521524.

B.C. Thomas , E.E. Engler , M. Kachelrieß , A.L. Melott , A.C. Overholt & D.V. Semikoz (2016). Terrestrial effects of nearby supernovae in the early Pleistocene. Astrophys. J. Lett. 826, L3. http://dx.doi.org/10.3847/2041-8205/826/1/L3.

T.H. Torsvik , R. van der Voo , P.V. Doubrovine , K. Burke , B. Steinberger , L.D. Ashwal , R.G. Tronnes , S.J. Webb & A.L. Bull (2014). Deep mantle structure as a reference frame for movements in and on the Earth. Proc. Natl. Acad. Sci. USA 111, 87358740.

J. Valet & H. Valladas (2010). The Laschamp-Mono lake geomagnetic events and the extinction of Neanderthal: a causal link or a coincidence? Quat. Sci. Rev. 29, 3887–2893.

Y. Wei (2014). Oxygen escape from the earth during geomagnetic reversals: implications to mass extinction. Earth Planet. Sci. Lett. 394, 9498.

A.B. Weil & R. Van der Voo (2002). Insights into the mechanism for orogeny-related carbonate remagnetization from growth of authigenic Fe-oxide: a scanning electron microscopy and rock magnetic study for Devonian carbonates from northern Spain. J. Geophys. Res. 107, 114.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
EXCEL
Supplementary Materials

Melott supplementary material
Supplementary Table

 Excel (104 KB)
104 KB
UNKNOWN
Supplementary Materials

Melott supplementary material
Figure S1

 Unknown (148 KB)
148 KB

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 11 *
Loading metrics...

Abstract views

Total abstract views: 39 *
Loading metrics...

* Views captured on Cambridge Core between 14th March 2017 - 28th March 2017. This data will be updated every 24 hours.