Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 14
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    La Cruz, Nikita L. Qasim, Danna Abbott-Lyon, Heather Pirim, Claire McKee, Aaron D. Orlando, Thomas Gull, Maheen Lindsay, Danny and Pasek, Matthew A. 2016. The evolution of the surface of the mineral schreibersite in prebiotic chemistry. Phys. Chem. Chem. Phys., Vol. 18, Issue. 30, p. 20160.

    Qiu, Huimin Geng, Jinju Ren, Hongqiang and Xu, Zhaoyi 2016. Phosphite flux at the sediment–water interface in northern Lake Taihu. Science of The Total Environment, Vol. 543, p. 67.

    Pasek, Matthew Herschy, Barry and Kee, Terence P. 2015. Phosphorus: a Case for Mineral-Organic Reactions in Prebiotic Chemistry. Origins of Life and Evolution of Biospheres, Vol. 45, Issue. 1-2, p. 207.

    Qiu, Huimin Geng, Jinju Shen, Chenyang Ren, Hongqiang and Xu, Zhaoyi 2015. Aquatic photooxidation of phosphite in the presence of ferric and oxalate ions. Chemical Engineering Journal, Vol. 269, p. 408.

    Barge, Laura M. Kee, Terence P. Doloboff, Ivria J. Hampton, Joshua M.P. Ismail, Mohammed Pourkashanian, Mohamed Zeytounian, John Baum, Marc M. Moss, John A. Lin, Chung-Kuang Kidd, Richard D. and Kanik, Isik 2014. The Fuel Cell Model of Abiogenesis: A New Approach to Origin-of-Life Simulations. Astrobiology, Vol. 14, Issue. 3, p. 254.

    Gull, Maheen 2014. Prebiotic Phosphorylation Reactions on the Early Earth. Challenges, Vol. 5, Issue. 2, p. 193.

    Jaisi, Deb P. and Blake, Ruth E. 2014.

    Pirim, C. Pasek, M.A. Sokolov, D.A. Sidorov, A.N. Gann, R.D. and Orlando, T.M. 2014. Investigation of schreibersite and intrinsic oxidation products from Sikhote-Alin, Seymchan, and Odessa meteorites and Fe3P and Fe2NiP synthetic surrogates. Geochimica et Cosmochimica Acta, Vol. 140, p. 259.

    Bryant, David E. Greenfield, David Walshaw, Richard D. Johnson, Benjamin R.G. Herschy, Barry Smith, Caroline Pasek, Matthew A. Telford, Richard Scowen, Ian Munshi, Tasnim Edwards, Howell G.M. Cousins, Claire R. Crawford, Ian A. and Kee, Terence P. 2013. Hydrothermal modification of the Sikhote-Alin iron meteorite under low pH geothermal environments. A plausibly prebiotic route to activated phosphorus on the early Earth. Geochimica et Cosmochimica Acta, Vol. 109, p. 90.

    Kee, Terence Bryant, David Herschy, Barry Marriott, Katie Cosgrove, Nichola Pasek, Matthew Atlas, Zachary and Cousins, Claire 2013. Phosphate Activation via Reduced Oxidation State Phosphorus (P). Mild Routes to Condensed-P Energy Currency Molecules. Life, Vol. 3, Issue. 3, p. 386.

    Pasek, M. A. Harnmeijer, J. P. Buick, R. Gull, M. and Atlas, Z. 2013. Evidence for reactive reduced phosphorus species in the early Archean ocean. Proceedings of the National Academy of Sciences, Vol. 110, Issue. 25, p. 10089.

    Pasek, Matthew A. Mousis, Olivier and Lunine, Jonathan I. 2011. Phosphorus chemistry on Titan. Icarus, Vol. 212, Issue. 2, p. 751.

    Bryant, David E. Marriott, Katie E. R. Macgregor, Stuart A. Kilner, Colin Pasek, Matthew A. and Kee, Terence P. 2010. On the prebiotic potential of reduced oxidation state phosphorus: the H-phosphinate–pyruvate system. Chemical Communications, Vol. 46, Issue. 21, p. 3726.

    Pasek, Matthew and Block, Kristin 2009. Lightning-induced reduction of phosphorus oxidation state. Nature Geoscience, Vol. 2, Issue. 8, p. 553.


Electrochemical studies of iron meteorites: phosphorus redox chemistry on the early Earth

  • David E. Bryant (a1), David Greenfield (a2), Richard D. Walshaw (a3), Suzanne M. Evans (a1), Alexander E. Nimmo (a1), Caroline L. Smith (a4), Liming Wang (a5), Matthew A. Pasek (a6) and Terence P. Kee (a1)
  • DOI:
  • Published online: 01 January 2009

The mineral schreibersite, (Fe,Ni)3P, a ubiquitous component of iron meteorites, is known to undergo anoxic hydrolytic modification to afford a range of phosphorus oxyacids. H-phosphonic acid (H3PO3) is the principal hydrolytic product under hydrothermal conditions, as confirmed here by 31P-NMR spectroscopic studies on shavings of the Seymchan pallasite (Magadan, Russia, 1967), but in the presence of photochemical irradiation a more reduced derivative, H-phosphinic (H3PO2) acid, dominates. The significance of such lower oxidation state oxyacids of phosphorus to prebiotic chemistry upon the early Earth lies with the facts that such forms of phosphorus are considerably more soluble and chemically reactive than orthophosphate, the commonly found form of phosphorus on Earth, thus allowing nature a mechanism to circumvent the so-called Phosphate Problem.

This paper describes the Galvanic corrosion of Fe3P, a hydrolytic modification pathway for schreibersite, leading again to H-phosphinic acid as the key P-containing product. We envisage this pathway to be highly significant within a meteoritic context as iron meteorites are polymetallic composites in which dissimilar metals, with different electrochemical potentials, are connected by an electrically conducting matrix. In the presence of a suitable electrolyte medium, i.e., salt water, galvanic corrosion can take place. In addition to model electrochemical studies, we also report the first application of the Kelvin technique to map surface potentials of a meteorite sample that allows the electrochemical differentiation of schreibersite inclusions within an Fe:Ni matrix. Such experiments, coupled with thermodynamic calculations, may allow us to better understand the chemical redox behaviour of meteoritic components with early Earth environments.

Corresponding author
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

V. Barone & M. Cossi (1998). J. Phys. Chem. A 102, 19952001.

N.L. Bozec , D. Persson , A. Nazarov & D. Thierry (2002). J. Electrochem. Soc. 149, B403408.

J.J. Brocks , G.D. Love , R.E. Summons , A.H. Knoll , G.A. Logan & S.A. Bowden (2005). Nature 437, 866870.

D.E. Bryant & T.P. Kee (2006). Chem. Commun. 23442346.

L.-E. Cheran , S. Johnstone , S. Sadeghi & M. Thompson (2007). Meas. Sci. Technol. 18, 567578.

C. Chyba & C. Sagan (1992). Nature 355, 125132.

G.W. Cooper , W.M. Onwo & J.R. Cronin (1992). Geochim. et Cosmochim. Acta, 56, 41094115.

G.W. Cooper , M.H. Thiemens , T.L. Jackson & S. Chang (1997). Science 277, 10721074.

M. Cossi (2003). J. Comp. Chem. 24, 669681.

R.M. De Graaf & A.W. Schwartz (2000). Origins of Life & Evol. Biosph., 30, 405410.

L.A. Curtiss , P.C. Redfern , K. Raghavachari & J.A. Pople (2001). J. Chem. Phys. 114, 108117.

R.M. De Graaf , J. Visscher & A.W. Schwartz (1995). Nature 378, 474477.

R.M. De Graaf , J. Visscher & A.W. Schwartz (1997). J. Mol. Evol. 44, 237241.

R.M. De Graaf , J. Visscher & A.W. Schwartz (1998). Origins of Life and Evol. Biosph. 28, 271282.

E.J. Gaidos , K.H. Nealson & J.L. Kirschvink (1999). Science 284, 16311633.

L.J. Leman , L.E. Orgel & M.R. Ghadira (2006). J. Am. Chem. Soc. 128, 2021.

E. Macia (2005). Chem. Soc. Rev. 34, 691701.

R. Österberg , L.E. Orgel & R. Lohrmann (1973). J. Mol. Evol. 2, 231234.

M.A. Pasek (2008). Proc. Nat. Acad. Sci. USA, 105, 853858.

M.A. Pasek , J.P. Dworkin & D.S. Lauretta (2007). Geochim. Cosmochim Acta, 71, 17211736.

M.A. Pasek , T.P. Kee , D.E. Bryant , A.A. Pavlov & J.I. Lunine (2008). Angew. Chem. Int. Ed. Engl. in press.

M.A. Pasek & D.S. Lauretta (2005). Astrobiology 5, 515535.

M.A. Pasek & D.S. Lauretta (2008). Origins Life Evol. Biosph. 38, 521.

G. Pratesi , L. Bindi & V. Moggi-Cecchi (2006). Am. Mineral. 91, 451454.

F. Robert & M. Chaussidon (2006). Nature 443, 969972.

B. Schink & M. Friedrich (2000). Nature 406, 3637.

A.W. Schwartz (1995). Planet. Space Sci. 43, 161165.

A.W. Schwartz (1997). J. Theor. Biol. 187, 523527.

M. Stratmann & H. Streckel (1990). Corrosion Sci. 30, 681696.

H. Tanabe , T. Shibuya , N. Kobayashi & T. Misawa (1997). ISIJ International 37, 278282.

P. Van Cappellen & E.D. Ingall (1996). Science 271, 493496.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *