Skip to main content
×
Home
    • Aa
    • Aa

Electrochemical studies of iron meteorites: phosphorus redox chemistry on the early Earth

  • David E. Bryant (a1), David Greenfield (a2), Richard D. Walshaw (a3), Suzanne M. Evans (a1), Alexander E. Nimmo (a1), Caroline L. Smith (a4), Liming Wang (a5), Matthew A. Pasek (a6) and Terence P. Kee (a1)...
Abstract
Abstract

The mineral schreibersite, (Fe,Ni)3P, a ubiquitous component of iron meteorites, is known to undergo anoxic hydrolytic modification to afford a range of phosphorus oxyacids. H-phosphonic acid (H3PO3) is the principal hydrolytic product under hydrothermal conditions, as confirmed here by 31P-NMR spectroscopic studies on shavings of the Seymchan pallasite (Magadan, Russia, 1967), but in the presence of photochemical irradiation a more reduced derivative, H-phosphinic (H3PO2) acid, dominates. The significance of such lower oxidation state oxyacids of phosphorus to prebiotic chemistry upon the early Earth lies with the facts that such forms of phosphorus are considerably more soluble and chemically reactive than orthophosphate, the commonly found form of phosphorus on Earth, thus allowing nature a mechanism to circumvent the so-called Phosphate Problem.

This paper describes the Galvanic corrosion of Fe3P, a hydrolytic modification pathway for schreibersite, leading again to H-phosphinic acid as the key P-containing product. We envisage this pathway to be highly significant within a meteoritic context as iron meteorites are polymetallic composites in which dissimilar metals, with different electrochemical potentials, are connected by an electrically conducting matrix. In the presence of a suitable electrolyte medium, i.e., salt water, galvanic corrosion can take place. In addition to model electrochemical studies, we also report the first application of the Kelvin technique to map surface potentials of a meteorite sample that allows the electrochemical differentiation of schreibersite inclusions within an Fe:Ni matrix. Such experiments, coupled with thermodynamic calculations, may allow us to better understand the chemical redox behaviour of meteoritic components with early Earth environments.

Copyright
Corresponding author
e-mail: t.p.kee@leeds.ac.uk
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

V. Barone & M. Cossi (1998). J. Phys. Chem. A 102, 19952001.

N.L. Bozec , D. Persson , A. Nazarov & D. Thierry (2002). J. Electrochem. Soc. 149, B403408.

J.J. Brocks , G.D. Love , R.E. Summons , A.H. Knoll , G.A. Logan & S.A. Bowden (2005). Nature 437, 866870.

D.E. Bryant & T.P. Kee (2006). Chem. Commun. 23442346.

L.-E. Cheran , S. Johnstone , S. Sadeghi & M. Thompson (2007). Meas. Sci. Technol. 18, 567578.

C. Chyba & C. Sagan (1992). Nature 355, 125132.

G.W. Cooper , W.M. Onwo & J.R. Cronin (1992). Geochim. et Cosmochim. Acta, 56, 41094115.

G.W. Cooper , M.H. Thiemens , T.L. Jackson & S. Chang (1997). Science 277, 10721074.

M. Cossi (2003). J. Comp. Chem. 24, 669681.

R.M. De Graaf & A.W. Schwartz (2000). Origins of Life & Evol. Biosph., 30, 405410.

L.A. Curtiss , P.C. Redfern , K. Raghavachari & J.A. Pople (2001). J. Chem. Phys. 114, 108117.

R.M. De Graaf , J. Visscher & A.W. Schwartz (1995). Nature 378, 474477.

R.M. De Graaf , J. Visscher & A.W. Schwartz (1997). J. Mol. Evol. 44, 237241.

R.M. De Graaf , J. Visscher & A.W. Schwartz (1998). Origins of Life and Evol. Biosph. 28, 271282.

E.J. Gaidos , K.H. Nealson & J.L. Kirschvink (1999). Science 284, 16311633.

L.J. Leman , L.E. Orgel & M.R. Ghadira (2006). J. Am. Chem. Soc. 128, 2021.

E. Macia (2005). Chem. Soc. Rev. 34, 691701.

R. Österberg , L.E. Orgel & R. Lohrmann (1973). J. Mol. Evol. 2, 231234.

M.A. Pasek (2008). Proc. Nat. Acad. Sci. USA, 105, 853858.

M.A. Pasek , J.P. Dworkin & D.S. Lauretta (2007). Geochim. Cosmochim Acta, 71, 17211736.

M.A. Pasek , T.P. Kee , D.E. Bryant , A.A. Pavlov & J.I. Lunine (2008). Angew. Chem. Int. Ed. Engl. in press.

M.A. Pasek & D.S. Lauretta (2005). Astrobiology 5, 515535.

M.A. Pasek & D.S. Lauretta (2008). Origins Life Evol. Biosph. 38, 521.

G. Pratesi , L. Bindi & V. Moggi-Cecchi (2006). Am. Mineral. 91, 451454.

F. Robert & M. Chaussidon (2006). Nature 443, 969972.

B. Schink & M. Friedrich (2000). Nature 406, 3637.

A.W. Schwartz (1995). Planet. Space Sci. 43, 161165.

A.W. Schwartz (1997). J. Theor. Biol. 187, 523527.

M. Stratmann & H. Streckel (1990). Corrosion Sci. 30, 681696.

H. Tanabe , T. Shibuya , N. Kobayashi & T. Misawa (1997). ISIJ International 37, 278282.

P. Van Cappellen & E.D. Ingall (1996). Science 271, 493496.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 9 *
Loading metrics...

Abstract views

Total abstract views: 132 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th August 2017. This data will be updated every 24 hours.