Skip to main content
×
×
Home

The evidence for and against astronomical impacts on climate change and mass extinctions: a review

  • C.A.L. Bailer-Jones (a1)
Abstract

Numerous studies over the past 30 years have suggested there is a causal connection between the motion of the Sun through the Galaxy and terrestrial mass extinctions or climate change. Proposed mechanisms include comet impacts (via perturbation of the Oort cloud), cosmic rays and supernovae, the effects of which are modulated by the passage of the Sun through the Galactic midplane or spiral arms. Supposed periodicities in the fossil record, impact cratering dates or climate proxies over the Phanerozoic (past 545 Myr) are frequently cited as evidence in support of these hypotheses. This remains a controversial subject, with many refutations and replies having been published. Here I review both the mechanisms and the evidence for and against the relevance of astronomical phenomena to climate change and evolution. This necessarily includes a critical assessment of time series analysis techniques and hypothesis testing. Some of the studies have suffered from flaws in methodology, in particular drawing incorrect conclusions based on ruling out a null hypothesis. I conclude that there is little evidence for intrinsic periodicities in biodiversity, impact cratering or climate on timescales of tens to hundreds of Myr. Although this does not rule out the mechanisms, the numerous assumptions and uncertainties involved in the interpretation of the geological data and in particular in the astronomical mechanisms suggest that Galactic midplane and spiral arm crossings have little impact on biological or climate variation above background level. Non-periodic impacts and terrestrial mechanisms (volcanism, plate tectonics, sea level changes), possibly occurring simultaneously, remain likely causes of many environmental catastrophes. Internal dynamics of the biosphere may also play a role. In contrast, there is little evidence supporting the idea that cosmic rays have a significant influence on climate through cloud formation. It seems likely that more than one mechanism has contributed to biodiversity variations over the past half Gyr.

Copyright
References
Hide All
Abbott, D.H. & Isley, A.E. (2002). Extraterrestrial influences on mantle plume activity. Earth Planet. Sci. Lett. 205, 5362.
Alroy, J. (2008). Dynamics of origination and extinction in the marine fossil record. Proc. Nat. Acad. Sci. 105, 11 53611 542.
Alvarez, L.W., Alvarez, W., Asaro, F. & Michel, H.V. (1980). Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science 208, 10951108.
Alvarez, W. (2003). Comparing the evidence relevant to impact and flood basalt at times of major mass extinctions. Astrobiology 3, 153161.
Alvarez, W. & Muller, R.A. (1984). Evidence from crater ages for periodic impacts on the earth. Nature 308, 718720.
Arens, N.C. & West, I.D. (2008). Press–pulse: a general theory of mass extinction? Paleobiology 34, 456471.
Bailer-Jones, C.A.L. (2009). What will Gaia tell us about the Galactic disk? In The Galaxy Disk in Cosmological Context (Proc. Int. Astron. Union, IAU Symp.), vol. 254, eds Andersen, J., Bland-Hawthorn, J. & Nordström, B., pp. 475482. Cambridge University Press.
Bahcall, J.N. & Bahcall, S. (1985). The Sun's motion perpendicular to the galactic plane. Nature 316, 706708.
Bambach, R.K. (2006). Phanerozoic biodiversity mass extinctions. Ann. Rev. Earth Planet. Sci. 34, 127155.
Bergern, J.O. (2003). Could Fisher, Jeffreys and Neyman have agreed on testing? Statist. Sci. 18, 132.
Carslaw, K.S., Harrison, R.G. & Kirkby, J. (2002). Cosmic rays, clouds, and climate. Science 298, 17321737.
Cincotta, P.M., Méndez, M. & Núñez, J.A. (1995). Astronomical time series analysis 1. A search for periodicity using information entropy. Astrophys. J. 449, 231235.
Chapman, C.R. (2004). The hazard of near-Earth asteroid impacts on earth. Earth Planet. Sci. Lett. 222, 115.
Christensen, R. (2005). Testing Fisher, Neyman, Pearson and Bayes. The American Statistician 59, 121126.
Clube, S.V.M. & Napier, W.M. (1982a). Spiral arms, comets and terrestrial catastrophism. Quart. J. Royal Astronom. Soc. 23, 4566.
Clube, S.V.M. & Napier, W.M. (1982b). The role of episodic bombardment in geophysics. Earth Planet. Sci. Lett. 57, 251262.
Cornette, J.L. (2007). Gauss–Vaníček and Fourier transform spectral analyses of marine diversity. Comput. Sci. Eng. July/August, 6163.
Da-li, K. & Zi, Z. (2008). A study of the scale height of the thin Galactic disk in the solar neighbourhood. Chin. Astronom. Astrophys. 32, 360368.
Damon, P.E. & Laut, P. (2004). Pattern of strange errors plagues solar activity and terrestrial climate data. Eos 85, 370374.
Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus 16, 436468.
Davis, M., Hut, P. & Muller, R.A. (1984). Extinction of species by periodic comet showers. Nature 308, 715717.
Dias, W.S. & Lépine, J.R.D. (2005). Direct determination of the spiral pattern rotation speed of the Galaxy. Astrophys. J. 629, 825831.
Dehnen, W. & Binney, J.J. (1998a). Mass models of the Milky Way. Mon. Not. R. Astron. Soc. 294, 429438.
Dehnen, W. & Binney, J.J. (1998b). Local stellar kinematics from Hipparcos data. Mon. Not. R. Astron. Soc. 298, 387394.
Ellis, J. & Shramm, D.N. (1995). Could a nearby supernova explosion have caused a mass extinction? Proc. Natl. Acad. Sci. USA 92, 235238.
Epstein, S., Buchsbaum, R., Lowenstam, H. & Urey, H.C. (1961). Carbonate–water isotopic temperature scale. Bulletin Geol. Soc. Amer. 62, 417426.
Erlykin, A.D., Sloan, T. & Wolfendale, A.W. (2009). Solar activity and the mean global temperature. Environ. Res. Lett. 4, 014006.
Erwin, D.H. (2003). Impact at the Permo–Triassic boundary: a critical evaluation. Astrobiology 3, 6774.
Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver & Boyd, Edinburgh.
Friis-Christensen, E. & Lassen, K. (1991). Length of the solar cycle: an indicator of solar activity closely associated with climate. Science 254, 698700.
Fuchs, B. et al. (2009). The kinematics of late type stars in the solar cylinder studied with SDSS data. Astron. J. 137, 41494159.
Garwin, R.L. & Charpak, G. (2001). Megawatts and Megatons. Alfred A. Knopf, New York.
Gies, D.R. & Helsel, J.W. (2005). Ice age epochs and the Sun's path through the Galaxy. Astrophys. J. 626, 844848.
Gillman, M. & Erenler, H. (2007). The galactic cycle of extinction. Int. J. Astrobiol. 7, 1726.
Glikson, A. (2003). Comment on Abbott & Isley (2002). Earth Planet. Sci. Lett. 215, 425427.
Glen, W. (ed) (1994). The Mass-extinction Debates: How Science Works in a Crisis. Stanford University Press.
Goncharov, G.N. & Orlov, V.V. (2003). Global repeating events in the history of the Earth and the motion of the Sun in the Galaxy. Astronom. Rep. 47, 925933.
Gradstein, F., Ogg, J. & Smith, A. (2005). A Geologic Time Scale 2004. Cambridge University Press.
Gregory, P. (2005). Bayesian Logical Data Analysis for the Physical Sciences. Cambridge University Press.
Gregory, P.C. & Loredo, T.J. (1992). A new method for the detection of a periodic signal of unknown shape and period. Astrophys. J. 398, 146168.
Grieve, R.A.F., Sharpton, V.L., Goodacre, A.K. & Garvin, J.B. (1985). A perspective on the evidence for periodic cometary impacts on Earth. Earth Planet. Sci. Lett. 76, 19.
Grieve, R.A.F., Sharpton, V.L., Rupert, J.D. & Goodacre, A.K. (1988). Detecting a periodic signal in the terrestrial cratering record. Lunar and Planetary Science Conference, 18th, Houston, TX, 16–20 March 1987 (A89-10851 01-91), pp. 375382. Cambridge and New York/Houston, TX, Cambridge University Press/Lunar and Planetary Institute.
Hallam, A. (1989). The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates. Philos. Tran. R. Soc. Ser. B. 325, 437455.
Hallam, A. (2004). Catastrophes and Lesser Calamities. The Causes of Mass Extinctions. Oxford University Press.
Harris, A. (2008). What Spaceguard did. Nature 453, 11781179.
Haye, J.D., Imbrie, J. & Shackleton, N.J. (1976). Variations in the Earth's orbit: Pacemaker of the ice ages. Science 194, 11211132.
Heisler, J. & Tremaine, S. (1989). How dating uncertainties affect the detection of periodicity in extinctions and craters. Icarus 77, 213219.
Hildebrand, A.R., Penfield, G.T., Kring, D.A., Pilkington, M., Camargo, Z.A., Jacobsen, S.B. & Boynton, W.V. (1991). Chicxulub Crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatan Penninsula, Mexico. Geology 19, 867871.
Hoyle, F. & Lyttleton, R.A. (1939). The effect of interstellar matter on climatic variation. Proc. Cambridge Philos. Soc. 35, 401415.
Hut, P. (1984). How stable is an astronomical clock that can trigger mass extinctions on Earth? Nature 311, 638641.
IPCC, (2007). Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, eds Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L.. Cambridge University Press.
Jahnke, K. (2005). On the periodic clustering of cosmic ray exposure ages of iron meteorites, unpublished manuscript, astro-ph/0504055v1.
Jaynes, E.T. (2003). Probability Theory. The Logic of Science. Cambridge University Press.
Jetsu, L. & Pelt, J. (2000). Spurious periods in the terrestrial impact crater record. Astron. Astrophys. 353, 409418.
Jørgensen, T.S. & Hansen, A.W. (2000). Comments on Svensmark & Friis-Christensen (Svensmark & Friis-Christensen 1997). J. Atmospher. Solar–Terrestr. Phys. 62, 7377.
Kauffman, S.A. & Johnsen, S. (1991). Coevolution to the edge of chaos: Coupled fitness landscapes, poised states, and coevolutionary avalanches. J. Theoret. Biol. 149, 467505.
Kirkby, J. (2007). Cosmic rays and climate. Surveys Geophys. 28, 333375.
Kitchell, J.A. & Pena, D. (1984). Periodicity of extinctions in the geologic past: Deterministic versus stochastic explanations. Science 226, 689692.
Kristjánsson, J.E., Staple, A., Kristiansen, J. & Kaas, E. (2002). A new look at possible connections between solar activity, clouds and climate. Geophys. Res. Lett. 29, 221224.
Laut, P. (2003) Solar activity and terrestrial climate: an analysis of some purported correlations. J. Atmospher. Solar–Terrestr. Phys. 65, 801812.
Lisiecki, L.E. & Raymo, M.E. (2003). A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003.
Lin, C.C. & Shu, F.H. (1964). On the spiral structure of disk galaxies. Astrophys. J. 140, 464655.
Lindblad, B. (1938). On the theory of spiral structure in the nebulae. Zeitschrift für Astrophysik 15, 124136.
Lindegren, L. et al. (2008). The Gaia mission: science, organization and present status. In A Giant Step: from Milli- to Micro-arcsecond Astrometry (Proc. Int. Astronom. Union, IAU Symposium), eds Jin, W.J., Platais, I. & Perryman, M.A.C., vol. 248, pp. 217223. Cambridge University Press.
Leitch, E.M. & Vasisht, G. (1998). Mass extinctions and the sun's encounters with spiral arms. New Astronomy 3, 5156.
Lieberman, B.S. & Melott, A.L. (2007). Considering the case for biodiversity cycles: re-examining the evidence for periodicity in the fossil record, PLoS ONE 8, e759.
Lieberman, B.S. & Melott, A.L. (2009). Whilst this planet has gone cycling on: what role for periodic astronomical phenomena in large scale patterns in the history of life? Preprint arXiv:0901.3173.
Lockwood, M. (2005). Solar outputs, their variations and their effects on Earth. In The Sun, Solar Analogs and the Climate, eds Haigh, J.D., Lockwood, M. & Giampapa, M.S. Springer, Berlin.
Lockwood, M. & Fröhlich, C. (2007). Recent oppositely directed trends in solar climate forcings and the global mean surface air temperature. Proc. Roy. Soc. A. 463, 24472460.
Lomb, N.R. (1976). Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447462.
Lutz, T.M. (1985). The magnetic reversal record is not periodic. Nature 317, 404407.
Marsh, N.D. & Svensmark, H. (2000). Low cloud properties influenced by cosmic rays. Phys. Rev. Lett. 85, 50045007.
Matsumoto, M. & Kubotani, H. (1996). A statistical test for correlation between crater formation rate and mass extinctions, Mon. Not. Roy. Astron. Soc. 282, 14071412.
McCrea, W.H. (1975). Ice ages and the Galaxy. Nature 255, 607609.
Medvedev, M.V. & Melott, A.L. (2007). Do extragalactic cosmic rays induce cycles in fossil diversity? Astrophys. J. 664, 879889.
Melott, A.L. (2008). Long-term cycles in the history of life: Periodic biodiversity in the Paleobiology database, PLoS ONE 3, e4044.
Melott, A.L., Lieberman, B.S., Laird, C.M., Martin, L.D., Medvedev, M.V., Thomas, B.C., Cannizzo, J.K., Gehrels, N. & Jackman, C.H. (2004). Did a gamma-ray burst initiate the late Ordovician mass extinction? Int. J. Astrobiol. 3, 5561.
Morrison, D. (2003). Impacts and evolution: Future prospects. Astrobiology 3, 193205.
Muller, R.A. & MacDonald, G.J. (2000). Ice ages and astronomical causes. Springer–Praxis, Chichester.
Muller, R.A. & Morris, D.E. (1986). Geomagnetic reversals from impacts on the Earth. Geophys. Res. Lett. 13, 11771180.
Napier, W.N. (1988). NEOs and impacts: The Galactic connection. Celest. Mech. Dynam. Astron. 69, 5975.
Napier, W.M. & Clube, S.V.M. (1979). A theory of terrestrial catastrophism. Nature 282, 455459.
Negi, J.G. & Tiwari, R.K. (1983). Matching long term periodicities of geomagnetic reversals and Galactic motions of the solar system. Geophys. Res. Lett. 10, 713716.
Newman, M.E.J. (1997). A model of mass extinction. J. Theoret. Biol. 189, 235252.
Omerbashich, M. (2006). A Gauss–Vaníček spectral analysis of the Sepkoski compendium: no new life cycles. Computing in Science and Engineering. July/August 2007, 46.
Pallé, E. & Butler, C.J. (2002). The proposed connection between clouds and cosmic rays: cloud behaviour during the past 50–120 years. J. Atmospher. Solar–Terrestr. Phys. 64, 327337.
Pandey, O.P. & Negi, J.G. (1987). Global volcanism, biological mass extinctions and the galactic vertical motion of the solar system. Geophys. J. Royal Astronom. Soc. 89, 857867.
Patterson, C. & Smith, C. (1987). Is the periodicity of extinctions a taxonomic artefact? Nature 330, 248252.
Perryman, M.A.C. (2009). Astronomical Applications of Astrometry. Cambridge University Press.
Peters, S.E. & Foote, M. (2002). Determinants of extinction in the fossil record. Nature 416, 420424
Petit, J.R. et al. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429436.
Plotnick, R.E. & McKinney, M.L. (1993). Ecosystem organization and extinction dynamics. Palaios 8, 202212.
Rahmstorf, S. et al. (2004). Cosmic rays, carbon dioxide, and climate. Eos 85, 3841.
Rampino, M.R. (1998). The Galactic theory of mass extinctions: An update. Celestial Mech. Dynam. Astronom. 69, 4958.
Rampino, M.R. & Caldeira, K. (1992). Episodes of terrestrial geologic activity during past 260 million years: A quantitative approach. Celestial Mech. Dynam. Astronom. 54, 143159.
Rampino, M.R. & Stothers, R.B. (1984a) Terrestrial mass extinctions, cometary impacts and the sun's motion perpendicular to the galactic plane. Nature 308, 709712.
Rampino, M.R. & Stothers, R.B. (1984b). Reply to Stigler (1985). Nature 313, 159160.
Raup, D.M. (1985a). Magnetic reversals and mass extinctions. Nature 314, 341343.
Raup, D.M. (1985b). Rise and fall of periodicity. Nature 317, 384385.
Raup, D.M. & Sepkoski, J.S. (1984). Periodicity of extinctions in the geologic past. Proc. Natl. Acad. Sci. USA 81, 801805.
Raup, D.M. & Sepkoski, J.S. (1986). Periodic extinctions of families and genera. Science 231, 833836.
Raup, D.M. & Sepkoski, J.S. (1988). Testing for periodicity of extinction. Science 241, 9496.
Rohde, R.A. & Muller, R.A. (2005). Cycles in fossil diversity. Nature 2005 434, 208210.
Royer, D.L., Berner, R.A., Montañez, I.P., Tabor, N.J. & Beering, D.J. (2004). CO2 as a primary driver of Phanerozoic climate. GSA Today 14, 410.
Ruderman, M.A. (1974). Possible consequences of nearby supernova explosions for atmospheric ozone and terrestrial life. Science 184, 10791081.
Scargle, J.D. (1982). Studies in astronomical time series analysis 2. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835853.
Schaefer, B.E. (2008). A problem with the clustering of recent measures of the distance to the Large Magellanic Cloud. Astron. J. 135, 112199.
Scoville, N.Z. & Sanders, D.B. (1986). Observational constraints on the interaction of giant molecular clouds with the solar system. In The Galaxy and the Solar System, ed. Smoluchowski, R., pp. 6982. University of Arizona Press, Tucson.
Sellwood, J.A. & Carlberg, R.G. (1984). Spiral instabilities provoked by accretion and star formation. Astrophys. J. 282, 6174.
Sepkoski, J. (2002). A Compendium of Fossil Marine Animal Genera (Bull. Am. Paleontology, no. 363), eds Jablonski, D. & Foote, M. Paleontological Research Institution, Ithaca.
Sivia, D.S. (1996). Data analysis: A Bayesian tutorial. Oxford University Press.
Smith, A.B. (2007). Marine diversity through the Phanerozoic: problems and prospects. J. Geolog. Soc. 164, 731745.
Smith, A.B. & McGowan, A.B. (2005). Cyclicity in the fossil record mirrors rock outcrop area. Biol. Lett. 1, 443445.
Sober, E. (2008). Evidence and Evolution. Cambridge University Press.
Shaviv, N.J. (2003). The spiral structure of the Milky Way, cosmic rays, and ice age epochs on Earth. New Astronomy 8, 3977.
Shaviv, N.J. (2005). On climate response to changes in the cosmic ray flux and radiative budget. J. Geophys. Res. 110, A08105, 115.
Shaviv, N.J. & Veizer, J. (2003). Celestial driver of Phanerozoic climate? July, 410.
Shoemaker, E.M. (1983). Asteroid and comet bombardment of the Earth. Ann. Rev. Earth Planet. Sci. 11, 461494.
Shuter, W.L.H. & Klatt, C. (1986). Phase modulation of the Sun's z oscillations. Astrophys. J. 301, 471477.
Sloan, T. & Wolfendale, A.W. (2008). Testing the proposed causal link between cosmic rays and cloud cover. Environ. Res. Lett. 3, 16.
Stanley, S.M. (1990). Delayed recovery and the spacing of major extinctions. Paleobiology 16, 401414.
Stellingwerf, R.F. (1978). Period determination using phase dispersion minimization. Astrophys. J. 224, 953960.
Stigler, S.M. (1985). Terrestrial mass extinctions and galactic plane crossings. Nature 313, 159.
Stigler, S.M. & Wagner, M.J. (1987). A substantial bias in nonparametric tests for periodicity in geophysical data. Science 238, 940945.
Stigler, S.M. & Wagner, M.J. (1988). Reply to Raup & Sepkoski (Raup & Sepkoski 1988). Science 241, 9699.
Stothers, R. (1979). Solar activity during classical antiquity. Astron. Astrophys. 77, 121127.
Stothers, R. (1986). Periodicity of the Earth's magnetic reversals. Nature 322, 444446.
Sturrock, P.A. (2008). A Bayesian approach to power spectrum significance estimation, with application to solar neutrino data. Preprint arXiv:0809.0276v1
Svensmark, H. (2006). Imprint of Galactic dynamics on Earth's climate. Astron. Nachr. 9, 866870.
Svensmark, H. & Friis-Christensen, E. (1997). Variation of cosmic ray flux and global cloud coverage – a missing link in solar–climate relationships. J. Atmosph. Sol.–Terrestr. Phys. 59, 12251232.
Tanaka, H.K.M. (2006). Possible terrestrial effects of a nearby supernova explosion – Atmosphere's response. J. Atmosph. Sol.–Terrestr. Phys. 68, 13961400.
Teterev, A.V., Nemtchinov, I.V. & Rudak, L.V. (2004). Impacts of large planetesimals on the early Earth. Solar System Research 38, 4352.
Thomas, B.C. et al. (2005). Gamma-ray bursts and the Earth: Exploration of atmospheric, biological, climatic, and biogeochemical effects. Astrophys. J. 634, 509533.
Thomson, K.S. (1976). Explanation of large sale extinctions of lower vertebrates. Nature 261, 578580.
Toon, O.B., Turco, R.P. & Covey, C. (1997). Environmental perturbations caused by the impacts of asteroids and comets. Rev. Geophys. 35, 4178.
Torbett, M.V. (1989). Solar system and Galactic influences on the stability of the Earth. Palaeogeogr. Palaeoclim. Palaeoecol. 75, 333.
Torbett, M.V. & Smoluchowski, R. (1984). Orbital stability of the unseen solar companion linked to periodic extinction events. Nature 311, 641642.
Turon, C., O'Flaherty, K.S. & Perryman, M.A.C. (eds). (2005). The Three-Dimensional Universe with Gaia, ESA, SP–576, http://www.esa.int/esapub/conference/toc/tocSP576.pdf
Vallée, J.P. (2008). New velocimetry and revised cartography of the spiral arms in the Milky Way – A consistent symbiosis. Astron. J. 135, 13011310.
Veizer, J. et al. (1999). 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geolog. 161, 5899.
Wickramasinghe, J.T. & Napier, W.M. (2008). Impact cratering and the Oort cloud. Mon. Not. Roy. Astron. Soc. 387, 153157.
Wielen, R. (1977). The diffusion of stellar orbits derived from the observed age-dependence of the velocity dispersion. Astron. Astrophys. 60, 263275.
White, R.V. & Saunder, A.D. (2005). Volcanism, impact and mass extinctions: incredible or credible coincidences. Lithos 79, 299316.
Whitmire, D.P. & Jackson, A.A. (1984). Are periodic mass extinctions driven by a distant solar companion? Nature 308, 713715.
Wignall, P.B. (2001). Large igneous provinces and mass extinctions. Earth Sci. Rev. 53, 133.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed