Skip to main content
×
Home
    • Aa
    • Aa

Evidence for the distribution of perchlorates on Mars

  • Benton C. Clark (a1) and Samuel P. Kounaves (a2)
Abstract
Abstract

Various Mars missions have detected Cl atoms, chlorides and perchlorates in martian surface materials. The global soils, in particular, always contain significant levels of observable Cl. Direct evidence points to this Cl being in the form of both chlorides and perchlorates, and possibly also chlorates and other oxychlorines. The most widespread measurements have been of Cl atoms, and cannot discern the chemical form. However, from separate evidence of perchlorate obtained at high latitudes (Phoenix lander) and low latitudes (Curiosity rover), it is likely that perchlorates are widespread, albeit in varying proportions relative to the total amount of ubiquitous Cl.

Copyright
Corresponding author
e-mail: bclark@spacescience.org
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

A.K. Baird & B.C. Clark (1981). On the original igneous source of Martian fines. Icarus 45, 113123.

D.F. Blake (2013). Curiosity at gale crater, mars: characterization and analysis of the Rocknest sand shadow. Science 341(6153), 1239505. doi: 10.1126/science.1239505.

W.V. Boynton , G.J. Taylor , S. Karunatillake , R.C. Reedy & J.M. Keller (2007). Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars. J. Geophys. Res. 112, E12S99. doi: 10.1029/2007JE002887.

B.L. Carrier & S.P. Kounaves (2015). The origins of perchlorate in the martian soil. Geophys. Res. Lett. 42, 37463754. doi: 10.1002/2015GL064290.

D.C. Catling (2010). Atmospheric origin of perchlorate on Mars and in the Atacama. J. Geophys. Res. 115, E00E11. doi: 10.1029/2009JE003425.

R.T. Clancy (2013). First detection of Mars atmospheric hydroxyl. Icarus 226, 272281. doi: 10.106lj.icarus.2013.05.035.

B.C. Clark & D. van Hart (1981). The salts of Mars. Icarus 45, 370378.

B.C. Clark , A.K. Baird , R.J. Weldon , D.M. Tsusaki , L. Schnabel & M.P. Candelaria (1982). Chemical composition of martian fines. J. Geophys. Res. 87, 1005910067.

B.C. Clark (2005). Chemistry and mineralogy of outcrop at meridiani planum, mars. Earth Planet. Sci. Lett. 240, 7394.

R.A. Craddock & R. Greeley (2009). Minimum estimates of the amount and timing of gases released into the martian atmosphere from volcanic eruptions. Icarus 204, 512526.

S.C. Cull , R.E. Arvidson , J.G. Catalano , D.W. Ming , R.V. Morris , M.T. Mellon & M. Lemmon (2010). Concentrated perchlorate at the Mars Phoenix landing site: evidence for thin film liquid water on Mars. Geophys. Res. Lett. 37, L22203, doi: 10.1029/2010GL045269.

B. Diez (2009). Contribution of mars odyssey GRS at central elysium planitia. Icarus 200(2009), 1929. doi: 10.1016/j.icarus.2008.11.011.

J. Filiberto & A.H. Treiman (2009). Martian magmas contained abundant chlorine, but little water. Geology 37(12), 10871090.

G.J. Flynn (1996). The delivery of organic matter from asteroids and comets to the early surface of Mars. Earth Moon Planets 72, 469474.

O. Forni (2014). First detection of fluorine on Mars: implications for Gale Crater's geochemistry. Geophys. Res. Lett. 42, 10201028. doi: 10.1002/2014GL062742

M.M. Frey , J. Savarino , S. Morin , J. Erbland & J.M.F. Martins (2009). Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for reactive nitrogen cycling. Atmos. Chem. Phys. 9, 86818696.

C. Freissinet (2015). Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars. J. Geophys. Res. 120, 495514. doi: 10.1002/2014JE004737.

R. Gellert & B.C. Clark (2015). In situ compositional measurements of rocks and soils with the APXS on NASA's Mars rovers. Elements 11, 3944.

M.H. Hecht , (2009). Detection of perchlorate and the soluble chemistry of Martian soil at the phoenix lander site. Science 325, 6467.

J. Hubbard , J. Hardy , G. Voecks & E. Golub (1973). Photocatalytic synthesis of organic compounds from CO and water: involvement of surfaces in the formation and stabilization of products. J. Mol. Evol. 2, 149166.

(2015). Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments. Geochim.Cosmochim. Acta 164, 502522. doi: 10.1016/j.gca.2015.05.016.

H.B. Jensen & T.D. Glotch (2011). Investigation of the near-infrared spectral character of putative Martian chloride deposits. J. Geophys. Res. 116, E00J03. doi: 10.1029/2011JE003887

A.J.T. Jull & D.J. Donahue (1988). Terrestrial age of the antarctic shergottite EETA79001. Geochim. Cosmochim. Acta 52, 13091311.

N. Kang (2009). Characteristics of ClO4 – formation via photo-dissociation of aqueous chlorite. Environ. Chem. 6, 5359.

J.M. Keller (2006). Equatorial and midlatitude distribution of chlorine measured by Mars Odyssey GRS. J. Geophys. Res. 111, E03S08. doi: 10.1029/2006JE002679.

H.P. Klein (1978) The Viking biological experiments on Mars. Icarus 34, 666674.

S.P. Kounaves , B.L. Carrier , G.D. O'Neil , S.T. Stroble & MW Claire (2013). Destruction of organics on Mars by oxychlorines: evidence from Phoenix, Curiosity, and EETA79001. European Planetary Science Congress, Extended Abs. EPSC2013-799-1, vol. 8.

S.P. Kounaves , B.L. Carrier , G.D. O'Neil , S.T. Stroble & M.W. Claire (2014a). Evidence of martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: implications for oxidants and organics. Icarus 229, 206213.

V.A. Krasnopolsky (2006). Photochemistry of the martian atmosphere. Icarus 185, 153170.

F. Lefevre (2008). Heterogeneous chemistry in the atmosphere of Mars. Nature 454, 971975. doi: 10.1038/nature07116.

L.A. Leshin (2013). Volatile, isotope, and organic analysis of Martian Fines with the Mars Curiosity Rover. Science 341. doi: 10.1126/science.1238937.

G.V. Levin & P.A. Straat (1981) A search for a nonbiological explanation of the viking labeled release life detection experiment. Icarus 45, 494516.

K.A. Lodders (1998). A survey of Shergottite, nakhlite and chassigny meteorites whole-rock compositions. Meteoritics Planet. Sci. 33, A183A190.

R. Martinez & J.L. Gooding (1986). New saw-cut surfaces of EETA79001. Antarctic Meteorite Newsletter 9(1), 23, JSC Curator's Office, Houston.

B. Mason (1971). Handbook of Elemental Abundances in Meteorites. Gordon and Breach Science Publishers, New York.

D.W. Ming (2014). Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale crater, Mars. Science 343, 1245267.

R. Navarro-González (2006). The limitations on organic detection in Mars-like soils by thermal volatilization-gas chromatography-MS and their implications for the Viking results. Proc. Natl. Acad. Sci. USA 103, 1608916094.

L. Ojha , M.B. Wilhelm , S.L. Murchie , A.S. McEwen , J.J. Wray , J. Hanley , M. Massé & M. Chojnacki (2015). Spectral evidence for hydrated salts in seasonal brine flows on Mars. Nature Geosci., in press.

M.M. Osterloo , F.S. Anderson , V.E. Hamilton & B.M. Hynek (2010). Geologic context of proposed chloride-bearing materials on Mars. J. Geophys. Res. 115, E10012. doi: 10.1029/2010JE003613.

V.I. Oyama & B.J. Berdahl (1977). The Viking gas exchange experiment results from Chryse and Utopia surface samples. J. Geophys. Res. 82, 46694676.

R.C. Quinn , H.F. Martucci , S.R. Miller , C.E. Bryson , F.J. Grunthaner & P.J. Grunthaner (2013). Perchlorate radiolysis on Mars and the origin of martian soil reactivity. Astrobiology 13, 515520.

J. Schuttlefield (2012). Photooxidation of chloride by oxide minerals: implications for perchlorate on Mars. J. Am. Chem. Soc. 133, 17521–23.

V.I. Oyama , B.J. Berdahl & G.C. Carle (1977). Preliminary findings of the Viking gas exchange experiment and a model for martian surface chemistry. Nature 265, 110114.

M.L. Smith , M.W. Claire , D.C. Catling & K.J. Zahnle (2014). The formation of sulfate, nitrate and perchlorate salts in the martian atmosphere. Icarus 231, 5164.

I.L. ten Kate (2010). Organics on Mars? Astrobiology 10(6), 589603. doi: 10.1089/ast.2010.0498.

D.T. Vaniman (2014). Mineralogy of a mudstone at Yellowknife Bay, Gale Crater, Mars. Science 343. doi: 10.1126/science.1243480.

R.C. Wiens (2012). The ChemCam instrument suite on the Mars science laboratory (MSL) rover: body unit and combined system tests. Space Sci Rev. doi: 10.1007/s11214-012-9902-4

A.S. Yen (2006). Evidence for halite at Meridiani Planum, Extended Abstract 2128. Lunar Planet. Sci. 37th, Houston, TX.

A.S. Yen , D.W. Ming , R. Gellert , D. Vaniman , B. Clark , R. Morris , D.W. Mittlefehldt & R.E. Arvidson (2014). Investigation of martian aqueous processes using multiple APXS datasets. Extended Abstract 1403, 8th International Conf. Mars, Pasadena, CA, July 2014.

Y.L. Yung & W.B. DeMore (1999). Photochemistry of Planetary Atmospheres. Oxford University Press, NY.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 11
Total number of PDF views: 82 *
Loading metrics...

Abstract views

Total abstract views: 269 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th June 2017. This data will be updated every 24 hours.