Skip to main content
×
Home

Evolution through the stochastic dyadic Cantor Set: the uniqueness of mankind in the Universe

  • Diego S. Mahecha (a1)
Abstract
Abstract

The search for intelligent life or any type of life involves processes with nonlinear chaotic behaviours throughout the Universe. Through the sensitive dependence condition, chaotic dynamics are also difficult or impossible to duplicate, forecast and predict. Similar evolution patterns will result in completely different outcomes. Even, the intelligent life evolution pattern, based on carbon, DNA–RNA–protein, will differ from all possible sequences. In the present paper, the stochastic dyadic Cantor set models the many possible variations of such chaotic behaviours in the Universe, yielding to a tendency to zero, for any scenario of intelligent life evolution. The probability of the development of the exact microscopic and macroscopic scenario that is capable of supporting intelligent life or any other type of life in any planet is vanishingly small. Thus, the present analysis suggests that mankind, as an extremely statistically uncommon occurrence, is unique and alone in the Universe.

Copyright
Corresponding author
e-mail: sebastianmahecha@gmail.com
References
Hide All
Agnor C.B. (1999). On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus 142, 219237.
Argón-Calvo M., Weygaert R. & Jones B. (2010). Multiscale phenomenology of the cosmic web. Mon. Not. R. Astron. Soc. 408, 21632187.
Balbus S.A. & Hawley J.F. (2000). Solar nebula magnetohydrodynamics. Space Sci. Rev. 92, 3954.
Bbeckwith S. & Sargent A. (1996). Circumstellar disks and the search for neighbouring planetary systems. Nature 383, 139144.
Beaugé C., Callegari N. Jr., Ferraz-Mello S. & Michtchenko T.A. (2005). Resonances and stability of extra-solar planetary systems. In Proc. IAU Colloquium on Dynamics of Populations of Planetary Systems, pp. 197.
Booth M., Wyatt M.C., Morbidelli A., Moro-Martín A., Levison H.F. (2009). How common are extrasolar, late heavy bombardments? In Proc. Pathways Towards Habitable Planets, ed. du Foresto V.C., Gelino D.M. & Ribas I., pp. 407. Astronomical Society of the Pacific, San Francisco.
Boss A.P. & Goswami J.N. (2006). Presolar Cloud collapse and the formation and early evolution of the solar Nebula. In Meteorites and the Early Solar System II, ed. Lauretta D.S. & McSween H.Y. Jr., Vol. 943, pp. 171186. University of Arizona Press, Tucson.
Chian A.C. et al. (2007). Chaos in driven Alfvén systems: unstable periodic orbits and chaotic saddles. Nonlin. Process. Geophys. 14, 1729.
Chiang E. & Youdin A.N. (2010). Forming planetesimals in solar and extrasolar nebulae. Annu. Rev. Earth Planet. Sci. 38, 493522.
Diacu F., Holmes P. (1997). Celestial Encounters: the Origins of Chaos and Stability. Princeton University Press, Princeton, NJ.
Feigenbaum M. (1983). Universal behavior in nonlinear systems. Physics D 7, 1639.
Gomes R., Levison H.F., Tsiganis K. & Morbidelli A. (2005). Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature Lett. 436, 466469.
Hadjidemetriou J.D. & Voyatzis G. (2011). Different types of attractors in the three body problem perturbed by dissipative terms. Int. J. Bifurcation Chaos 21(8), 21952209.
Hahn J.M. & Malhorta R. (1998). Radial migration of protoplanets embedded in a massive planetesimal disk. Am. Astron. Soc. 30, 1052.
Harvard-Smithsonian Center for astrophysicist. (2013). Release No.: 2013-0. Monday, January 07, 2013 01:30:00 PM EST. (http://www.cfa.harvard.edu/news/2013/pr201301.html)
Hassan M.K., Pavel R.K. & Kurths J. (2014). Dyadic Cantor set and its kinetic and stochastic counterpart. Chaos Solitons Fractals 60, 3139.
Haynes W.B. (2007). Is the outer system chaotic? Nat. Phys. 3, 689691.
Horton W., Weige R.S. & Sprott J.C. (2001). Chaos and the limits of predictability for the solar-wind-driven magnetosphere–ionosphere system. Phys. Plasmas 8, 2946.
Iovane G., Laserra E. & Tortoriello F. (2004). Stochastic self-similar and fractal universe. Chaos Solitons Fractals 20, 415426.
Ispolatov I. & Doebeli M. (2014). Chaos and unpredictability in evolution. Evolution: Int. J. Org. Evol. 68, 13651373.
Kapitaniak T., Maistrenko Y., Stefanski A. & Brindley J. (1998). Bifurcations from locally to globally riddled basins. Phys. Rev. 57, 6253–2356.
Kellert S.H. (1993). In the Wake of Chaos: Unpredictable Order in Dynamical Systems, pp. 32. University of Chicago Press, Chicago.
Königl A. & Pudrtiz R. E. (2000). Disk winds and the accretion outflow connection. In Protostars and Planets IV, ed. Mannings V., Boss A.P. & Russell S.S., pp. 759787. University of Arizona Press, Tucson.
Kretke K.A., Levison H.F., Buie M.W. & Morbidelli A. (2010). A method to constrain the size of the protosolar nebula. Astron. J. 143, 91.
Kretke K.A., Levison H.F. & Buie M.W. (2011). Constraining the size of the protosolar nebula. EPSC-DPS Joint Meeting 6, 1588.
Lake G., Quinn T. & Richardson D.C. (1997). From Sir Isaac to the sloan survey: calculating the structure and chaos owing to gravity in the universe. New Orleans, LA, Jan. 5–7, 1997, pp. 1–10. In Proc. 8th Annual ACM-SIAM Symposium on Discrete Algorithm.
Lammer H. (2013). Evolution of the Solar/Stellar Radiation and Plasma Environment. Origin and Evolution of Planetary Atmospheres, pp. 15-2a. Springer, Berlin, Heidelberg.
Laskar J. (1994). Large scale chaos in the solar system. Astron. Astrophys. 287, 912.
Laskar J. (1997). Large scale chaos and the spacing of the solar system. Astron. Astrophys. Lett. 317, 7578.
Laskar J. (2003). Chaos in the solar system. Ann. Henri Poincaré 4(Suppl. 2), 693705.
Laskar J. & Robutel P. (1993). The chaotic obliquity of the planets. Nature 361, 608612.
Laughlin G., Steinacker A. & Adams F.C. (2004). Type I planetary migration with MHD turbulence. Astrophys. J. 608, 489496.
Levison H.F., Morbidelli A., Gomes R. & Backman D. (2007). Planet migration in planetesimal disks. In Protostars and Planets, ed. Reipurth V.B., Jewitt D. & Keil K., Vol. 951, pp. 669684. University of Arizona Press, Tucson.
Lissauer J.J. & Stewart G.R. (1993). Growth of planets from planetesimals. In Protostars and Planets III, ed. Levy E.H. & Lunine J.I., pp. 10611088. University of Arizona Press, Tucson.
Lufkin G., Richardson D.C. & Mundy L.G. (2006). Planetesimals in the presence of giant planet migration. Astrophys. J. 653, 14641468.
Macek W.M. (2009). Chaos and multifractals in the solar system plasma. In Proc. WSPC, pp. 62–81.
Malhorta R. (1998). Giant Planet Orbital Migration in the Early Solar System, Vol. 30, pp. 1052. American Astronomical Society, Madison-Wisconsin.
Martinez V. & Bernard J. (1990). Why the universe is not a fractal. Mon. Not. R. Astron. Soc. 242, 517521.
McNeil D. & Duncan M. (2005). Effects of type one migration on terrestrial planet formation. Astron. J. 130, 28842899.
Montmerle T., Augereau J., Chaussidon M., Gounelle M., Marty B., Morbidelly A. (2006). Solar system formation and early evolution: the first 100 million years. Earth Moon Planets 98, 3995.
Nagasawa M., Thommes E.W., Kenyon S.J., Bromley B.C. & Lin D.N.C. (2007). The diverse origins of terrestrial-planet systems. In Protostars and Planets, ed. Reipurth V.B., Jewitt D. & Keil K., Vol. 951, pp. 639654. University of Arizona Press, Tucson.
Néron de Surgy O. & Laskar J. (1997). On the long term evolution of the spin of the Earth. Astron. Astrophys. 318, 975989.
Papaloizou J.C.B. & Szuszkiewicz E. (2005). Orbital migration in protoplanetary disks. In Proc. IAU Symp., p. 229.
Park H., Ryutov D., Plechaty C., Ross S. & Kugland N. (2013). Chaotic plasmas give birth to orderly electromagnetic fields. Science and Technology Review 23, 2124.
Pesin Y. & Weiss H. (1997). The multifractal analysis of Gibbs measures: motivation, mathematical foundation, and examples. Chaos 7, 89.
Puertz S., Prokoph A., Borchardt G. & Mason E. (2014). Evidence of synchronous, decadal to billion year's cycles in geological, genetic, and astronomical events. Chaos Solitons Fractals 62–63, 5575.
Radburn-Smith D., Lucey J., Woudt P., Kraan-Korteweg R. & Watson F. (2006). Structures in the Great Attractor region. Mon. Not. R. Astron. Soc. 369, 11311142.
Rafikov R.R. (2004). Fast accretion of small planetesimals by protoplanetary cores. Astron. J. 128, 13481363.
Rafikov R.R. & Slepian Z.S. (2010). Dynamical evolution of thin dispersion-dominated planetesimal disks. Astron. J. 139, 565579.
Safronov V.S. (1967). The protoplanetary cloud and its evolution. Sov. Astron. 10, 650.
shCherbak V. & Makukov M. (2013). The ‘‘Wow! Signal’’ of the terrestrial genetic code. Icarus 224, 228242.
Sussman G.J. & Wisdom J. (1992). Chaotic evolution of the solar system. Science 257, 5662.
Sussman G.J. & Wisdom J. (1998). Numerical evidence that the motion of Pluto is chaotic. Science 241, 433437.
Szuszkiewicz E. & Papaloizou J.C.B. (2010). Dynamical architectures of planetary systems induced by orbital migration. E.A.S. Public. Ser. 42, 303312.
Thommes E.W., Matsumura S. & Rasio F.A. (2008). Gas disks to gas giants: Simulating the birth of planetary systems. Science 321(5890), 814817.
Tipler F.J. (1980). Extra-terrestrial intelligent beings do not exist. R. Astron. Soc. 21, 267281.
Walker S.I., Cisneros L. & Davies P.W.C. (2012). Evolutionary transitions and top down causation. Proc. Artif. Life 13, 283290.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 4
Total number of PDF views: 38 *
Loading metrics...

Abstract views

Total abstract views: 483 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 15th December 2017. This data will be updated every 24 hours.