Skip to main content

From climate models to planetary habitability: temperature constraints for complex life

  • Laura Silva (a1), Giovanni Vladilo (a1), Patricia M. Schulte (a2), Giuseppe Murante (a1) and Antonello Provenzale (a3)...

In an effort to derive temperature-based criteria of habitability for multicellular life, we investigated the thermal limits of terrestrial poikilotherms, i.e. organisms whose body temperature and the functioning of all vital processes is directly affected by the ambient temperature. Multicellular poikilotherms are the most common and evolutionarily ancient form of complex life on earth. The thermal limits for the active metabolism and reproduction of multicellular poikilotherms on earth are approximately bracketed by the temperature interval 0°C ≤ T ≤ 50°C. The same interval applies to the photosynthetic production of oxygen, an essential ingredient of complex life, and for the generation of atmospheric biosignatures observable in exoplanets. Analysis of the main mechanisms responsible for the thermal thresholds of terrestrial life suggests that the same mechanisms would apply to other forms of chemical life. We therefore propose a habitability index for complex life, h 050, representing the mean orbital fraction of planetary surface that satisfies the temperature limits 0°C ≤ T ≤ 50°C. With the aid of a climate model tailored for the calculation of the surface temperature of Earth-like planets, we calculated h 050 as a function of planet insolation, S, and atmospheric columnar mass, N atm, for a few earth-like atmospheric compositions with trace levels of CO2. By displaying h 050 as a function of S and N atm, we built up an atmospheric mass habitable zone (AMHZ) for complex life. At variance with the classic habitable zone, the inner edge of the complex life habitable zone is not affected by the uncertainties inherent to the calculation of the runaway greenhouse limit. The complex life habitable zone is significantly narrower than the habitable zone of dry planets. Our calculations illustrate how changes in ambient conditions dependent on S and N atm, such as temperature excursions and surface dose of secondary particles of cosmic rays, may influence the type of life potentially present at different epochs of planetary evolution inside the AMHZ.

Corresponding author
Hide All
Abe Y., Abe-Ouchi A., Sleep N.H. & Zahnle K.J. (2011). Habitable zone limits for dry planets. Astrobiology 11, 443460.
Addo-Bediako A., Chown S. L. & Gaston K. J. (2000). Thermal tolerance, climatic variability and latitude. Proc Biol Sci. 267(1445), 739745.
Arrhenius S. (1915). Quantitative Laws in Biological Chemistry. Bell, London.
Atri D., Hariharan B. & Grießmeier J.-M. (2013). Galactic cosmic ray-induced radiation dose on terrestrial exoplanets. Astrobiology 13, 910919.
Atri D. & Melott A. L. (2014). Cosmic Rays and Terrestrial Life: a Brief Review. Astropart. Phys. 53, 186190.
Bartik K., Bruylants G., Locci E. & Reisse J. (2011). Liquid water: a necessary condition for all forms of life? In Origins and Evolution of Life: an Astrobiological Perspective, ed. Gargaud M., López-García P. & Martin H., pp. 205217. Cambridge Univ. Press, Cambridge, UK.
Batalha N.M. et al. (2013). Planetary candidates observed by Kepler. III. Analysis of the first 16 months of data. Astrophys. J. Suppl. 204, 24 (21 pp).
Berg J., Tymoczko J.L. & Stryer L. (2007). Biochemistry, 6th edn. W. H. Freeman and Co., New York.
Bressan A., Marigo P., Girardi L., Salasnich B., Dal Cero C., Rubele S. & Nanni A. (2012). PARSEC: stellar tracks and isochrones with the PAdova and TRieste stellar evolution code. M.N.R.A.S. 427, 127.
Budisa N. & Schulze-Makuch D. (2014). Supercritical carbon dioxide and its potential as a life-sustaining solvent in a planetary environment. Life 4, 331340.
Bustamante C., Keller D. & Oster G. (2001). The physics of molecular motors. Acc. Chem. Res. 34, 412420.
Caldeira K. & Kasting J.F. (1992). The life span of the biosphere revisited. Nature 360, 721723.
Carigi L., García-Rojas J. & Meneses-Goytia S. (2013). Chemical evolution and the galactic habitable zone of M31. Rev. Mex. Astron. Astrofís. 49, 253273.
Carr A.G., Mammucarib R. & Fosterb N.R. (2011). A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chem. Eng. J. 172, 117.
Catling D.C., Glein C.R., Zahnle K.J. & McKay C.P. (2005). Why O2 is required by complex life on habitable planets and the concept of planetary “Oxygenation Time”. Astrobiology 5(3), 415438.
Cavicchioli R. & Thomas T. (2003). Extremophiles. In The Desk Encyclopedia of Microbiology, ed. Schaechter M., pp. 436453. Elsevier, London, UK.
Chyba C.F. & Hand K.P. (2005). Astrobiology: the study of the living universe. Ann. Rev. Astron. Astrophys. 43, 3174.
Clarke A. (2014). The thermal limits to life on Earth. Int. J. Astrobiology 13(2), 141154.
Cleaves H.J. & Chalmers J.H. (2004). Extremophiles may be irrelevant to the origin of life. Astrobiology 4, 19.
Cleland C.E. & Chyba C.F. (2002). Defining ‘Life’. Orig. Life Evol. Biosph. 32, 387393.
Cresto Aleina F., Baudena M., D'Andrea F. & Provenzale A. (2013). Multiple equilibria on planet Dune: climate-vegetation dynamics on a sandy planet. Tellus B 65, 17662.
Daniel R.M. & Danson M.J. (2010). A new understanding of how temperature affects the catalytic activity of enzymes. Trends Biochem. Sci. 35(10), 584591.
Daniel R.M., Danson M.J., Eisenthal R., Lee C.K. & Peterson M.E. (2007). New parameters controlling the effect of temperature on enzyme activity. Biochem. Soc. Trans. 35, 15431546.
Danovaro R., Dell'Anno A., Pusceddu A., Gambi C., Heiner I. & Kristensen R.M. (2010). The first metazoa living in permanently anoxic conditions. BMC Biol. 8, 30.
Delaye L. & Lazcano A. (2005). Prebiological evolution and the physics of the origin of life. Phys. Life Rev. 2, 4764.
Des Marais D.J., Harwit M.O., Jucks K.W., Kasting J.F., Lin D.N.C., Lunine J.I., Schneider J., Seager S., Traub W.A. & Woolf N.J. (2002). Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiology 2, 153181.
Des Marais D.J. et al. (2003). The NASA astrobiology roadmap. Astrobiology 3, 219235.
Dole S.H. (1964). Habitable Planets for Man. Blaisdell Pub. Co., New York.
Dressing C.D., Spiegel D.S., Scharf C.A., Menou K. & Raymond S.N. (2010). Habitable climates: the influence of eccentricity. Astrophys. J. 721, 12951307.
Ferrari F. & Szuszkiewicz E. (2009). Cosmic rays: a review for astrobiologists. Astrobiology 9(4), 413436.
Fields B.D., Athanassiadou T. & Johnson S.R. (2008). Supernova collisions with the heliosphere. Astrophys. J. 678, 549.
Forgan D. (2014) Assessing circumbinary habitable zones using latitudinal energy balance modelling. MNRAS 437, 1352.
Foreman-Mackey D., Hogg D.W. & Morton T.D. (2014). Exoplanet population inference and the abundance of Earth analogs from noisy, incomplete catalogs. Astrophys. J. 795, 64.
Fox R.F. & Choi M.H. (2001). Rectified Brownian motion and kinesin motion along microtubules. Phys. Rev. E 63, 051901051913.
Frank E.A., Meyer B.S. & Mojzsis S.J. (2014). A radiogenic heating evolution model for cosmochemically Earth-like exoplanets. Icarus 243, 274286.
Gates D.M. (1980). Biophysical Ecology. Springer-Verlag, New York.
Goldblatt C. & Watson A.J. (2012). The runaway greenhouse: implications for future climate change, geoengineering and planetary atmospheres. Phil. Trans. R. Soc. A 370, 41974216.
Gowanlock M.G., Patton D.R. & McConnell S.M. (2011). A model of habitability within the Milky Way galaxy. Astrobiology 11(9), 855873.
Grießmeier J.-M.A., Stadelmann A., Motschmann U., Belisheva N.K., Lammer H. & Biernat H.K. (2005). Cosmic ray impact on extrasolar earth-like planets in close-in habitable zones. Astrobiology 5(5), 587603.
Grosberg R.K. & Strathmann R.R. (2007). The evolution of multicellularity: a minor major transition? Ann. Rev. of Ecol. Evol. Syst. 38, 621654.
Harman C.E., Schwieterman E.W., Schottelkotte J.C. & Kasting J.F. (2015). Abiotic O2 levels on planets around F, G, K, and M stars: possible false positives for life?. Astrophys. J. 812, 137.
Hart M.H. (1978). The evolution of the atmosphere of the earth. Icarus 33, 23.
Hart M.H. (1979). Habitable zones about main sequence stars. Icarus 37, 35.
Hedelt P., von Paris P., Godolt M., Gebauer S., Grenfell J.L., Rauer H., Schreier F., Selsis F. & Trautmann T. (2013). Spectral features of Earth-like planets and their detectability at different orbital distances around F, G, and K-type stars. Astronom. Astrophys. 553, 9.
Hegde S. & Kaltenegger L. (2013). Colors of extreme exo-earth environments. Astrobiology 13, 4756.
Hillenius W.J. & Ruben J.A. (2004). The evolution of endothermy in terrestrial vertebrates: Who? When? Why? Physiol. Biochem. Zool. 77, 10191042.
Hobbs J.K., Jiao W., Easter A.D., Parker E.J., Schipper L.A. & Arcus V.L. (2013). Change in heat capacity for enzyme catalysis determines temperature dependence of enzyme catalyzed rates. ACS Chem. Biol. 8(11), 23882393.
Jakosky B.M. et al. (2015). MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science 350, 0210.
Jeffrey G.A. & Saenger W. (1991). Hydrogen Bonding in Biological Structures. Springer-Verlag, Berlin.
Kaltenegger L., Fridlund M. & Kasting J. (2002). Review on habitability and biomarkers. Earth-like Planets Moons 514, 277282.
Kaltenegger L., Traub W.A. & Jucks K.W. (2007). Spectral evolution of an earth-like planet. Astrophys. J 658, 598616.
Kasting J.F. (1988). Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74, 472494.
Kasting J.F. (1993). Earth's early atmosphere. Science 259, 920926.
Kasting J.F. & Catling D. (2003). Evolution of a habitable planet. Annu. Rev. Astron. Astrophys. 41, 429463.
Kasting J.F., Whitmore D.P. & Reynolds R.T. (1993). Habitable zones around main sequence stars. Icarus 101, 108128 (K93).
Kolb V.M. (2007). On the applicability of the Aristotelian principles to the definition of life. Int. J. of Astrobiol. 6, 5157.
Koonin E.V. (2015). Origin of eukaryotes from within archea, archeal eukaryome and bursts of gene gain: eukaryogenesis just made easier? Phil. Trans. R. Soc. B 370, 20140333.
Kopparapu R.K., Ramirez R., Kasting J.F., Eymet V., Robinson T.D., Mahadevan S., Terrien R.C., Domagal-Goldman S., Meadows V. & Deshpande R. (2013). Habitable zones around main-sequence stars: new estimates. Astroph. J. 765, 131.
Kopparapu R.K., Ramirez R.M., SchottelKotte J., Kasting J.F., Domagal-Goldman S. & Eymet V. (2014). Habitable zones around main-sequence stars: dependence on planetary mass. Astroph. J. 787, L29.
Lane N. (2014). Bioenergetic constraints on the evolution of complex life. Cold Spring Harb. Perspect. Biol. 6, a015982.
Lazcano A. (2008). Towards a definition of life: the impossible quest? Space Sci. Rev. 135, 510.
Leconte J., Forget F., Charnay B., Wordsworth R., Selsis F., Millour E. & Spiga A. (2013a). 3D climate modeling of close-in land planets: Circulation patterns, climate moist bistability, and habitability. Astron. Astrophys. 554, A69.
Leconte J., Forget F., Charnay B., Wordsworth R. & Pottier A. (2013b). Increased insolation threshold for runaway greenhouse processes on Earth-like planets. Nature 504, 268271.
Lee C.K., Daniel R.M., Shepherd C., Saul D., Cary S.C., Danson M.J., Eisenthal R. & Peterson M.E. (2007). Eurythermalism and the temperature dependence of enzyme activity. FASEB J. 21(8), 19341941.
Li K., Pahlevan K., Kirschvink J.L. & Yung Y.L. (2009). Atmospheric pressure as a natural climate regulator for a terrestrial planet with a biosphere. PNAS 106(24), 95769579.
Lineweaver C.H., Fenner Y. & Gibson B.K. (2004). The galactic habitable zone and the age distribution of complex life in the Milky Way. Science 303, 5962.
Lovegrove B.G. (2012). The evolution of endothermy in Cenozoic mammals: a plesiomorphic apomorphic continuum. Biol. Rev. 87, 128162.
Magill J. & Galy J. (2005). Radioactivity Radionuclides Radiation. Springer-Verlag, Berlin, Heidelberg and European Communities.
Márquez L.M., Redman R.S., Rodriguez R.J. & Roossinck M.J. (2007). A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315, 513.
Mayor M. et al. (2011). The HARPS search for southern extra-solar planets. XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets. ArXiv e-prints, arXiv:1109.2497.
Mayor M., Lovis C. & Santos N.C. (2014). Doppler spectroscopy as a path to the detection of Earth-like planets. Nature 513, 328335.
McKay C.P. (2014). Requirements and limits for life in the context of exoplanets. PNAS 111, 1262812633.
Minorsky P.V. (2003). The hot and the classic. Plant Physiol. 132, 2526.
Misra A., Meadows V., Claire M. & Crisp D. (2014). Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets. Astrobiology 14(2), 6786.
Narita N., Enomoto T., Masaoka S. & Kusakabe N. (2015). Titania may produce abiotic oxygen atmospheres on habitable exoplanets. Scientific Rep. 5, 13977.
North G.R., Cahalan R.F. & Coackley J.A. (1981). Energy balance climate models. Rev. Geophys. Space phys. 19, 91121.
O'Malley-James J.T., Greaves J.S., Raven J.A. & Cockell C.S. (2013). Swansong biospheres: refuges for life and novel microbial biospheres on terrestrial planets near the end of their habitable lifetimes. Int. J. Astrobiol. 12, 99112.
O'Malley-James J.T., Cockell C.S., Greaves J.S. & Raven J.A. (2014). Swansong biospheres II: the final signs of life on terrestrial planets near the end of their habitable lifetimes. Int. J. Astrobiol. 13, 229243.
Oster G. & Wang H. (2003). How protein motors convert chemical energy into mechanical work. In Molecular Motors, ed. Schliwa M., pp. 207227. Wiley-VHC, Weinheim.
Pallé E., Zapatero Osorio M.R., Barrena R., Montañés-Rodríguez P. & Martín E.L. (2009). Earth's transmission spectrum from lunar eclipse observations. Nature 459, 814816.
Parnell J., Boyce A.J. & Blamey N.J.F. (2010). Follow the methane: the search for a deep biosphere, and the case for sampling serpentinites, on Mars. Int. J. Astrobiol. 9, 193200.
Peterson M.E., Daniel R.M., Danson M.J. & Eisenthal R. (2007). The dependence of enzyme activity on temperature: determination and validation of parameters. Biochem. J. 402(2), 331337.
Pierrehumbert R. & Gaidos E. (2011). Hydrogen greenhouse planets beyond the habitable zone. ApJ 734, L13.
Pierrehumbert R.T. (2010). Principles of Planetary Climate. Cambridge Univ. Press, Cambridge, UK.
Podio L. et al. (2013). Water vapor in the protoplanetary disk of DG Tau. Astrophys. J. 766, L5.
Pörtner H.O. (2002). Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp. Biochem. Physiol. Part A 132, 739.
Prantzos N. (2008). On the “Galactic Habitable Zone”. Space Sci. Rev. 135, 313322.
Precht H., Christophersen J., Hensel H. & Larcher W. (1973). Temperature and Life. Springer-Verlag, Berlin, Heidelberg.
Provenzale A. (2014). Climate models. Rend. Fis. Acc. Lincei 25, 4958.
Rasool S.I. & de Bergh C. (1970). The runaway greenhouse and the accumulation of CO2 in the Venus atmosphere. Nature 226, 10371039.
Ravaux J., Hamel G., Zbinden M., Tasiemski A.A., Boutet I., Léger N., Tanguy A., Jollivet D. & Shillito B. (2013). Thermal limit for metazoan life in question: in vivo heat tolerance of the Pompeii Worm. PLoS ONE 8(5), e64074.
Ribas I., Guinan E.F., Güdel M. & Audard M. (2005). Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1–1700 Å). Astrophys. J. 622, 680694.
Ruben J. (1995). The evolution of endothermy in mammals and birds: from physiology to fossils. Ann. Rev. of Physiology 57(1), 6995.
Rugheimer S., Kaltenegger L., Zsom A., Segura A. & Sasselov D. (2013). Spectral fingerprints of earth-like planets around FGK stars. Astrobiology 13(3), 251269.
Salaris M. & Cassisi S. (2005). Evolution of Stars and Stellar Populations. John Wiley and Sons, West Sussex, England.
Schmidt-Nielsen K. (1997). Animal Physiology: Adaptation and Environment. Cambridge University Press, Cambridge, UK.
Schulte P.M. (2015). The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218(12), 18561866.
Schulze-Makuch D. & Irwin L.N. (2008). Life in the Universe. Expectations and Constraints, 2nd edn. Springer, Berlin.
Seager S. & Deming D. (2010). Exoplanet atmospheres. Annu. Rev. Astron. Astrophys. 48, 631672.
Segura A., Meadows V.S., Kasting J.F., Crisp D. & Cohen M. (2007). Abiotic formation of O2 and O3 in high-CO2 terrestrial atmospheres. Astron. Astrophys. 472, 665679.
Selsis F., Kasting J.F., Levrard B., Paillet J., Ribas I. & Delfosse X. (2007). Habitable planets around the star Gliese 581? A&A 476, 13731387.
Shock E.L. & Holland M.E. (2007). Quantitative habitability. Astrobiology 7, 839851.
Som S.M., Catling D.C., Harnmeijer J.P., Polivka P.M. & Buick R. (2012). Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints. Nature 484, 359.
Spang A., Saw J.H., Jørgensen S.L., Zaremba-Niedzwiedzka K., Martijn J., Lind A.E., van Eijk R., Schleper C., Guy L. & Ettema T.J.G. (2015). Complex archea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173179.
Spiegel D.S., Menou K. & Scharf C.A. (2008). Habitable climates. ApJ 681, 16091623.
Spiegel D.S., Menou K. & Scharf C.A. (2009). Habitable climates: the influence of obliquity. ApJ 691, 596610.
Spiegel D.S., Raymond S.N., Dressing C.D., Scharf C.A. & Mitchell J.L. (2010). Generalized Milankovitch cycles and long-term climatic habitability. ApJ 721, 13081318.
Spitoni E., Matteucci F. & Sozzetti A. (2014). The galactic habitable zone of the Milky Way and M31 from chemical evolution models with gas radial flows. MNRAS 440, 25882598.
Stan-Lotter H. (2007). Extremophiles, the physicochemical limits of life (growth and survival). In Complete Course in Astrobiology, ed. Horneck G. & Rettberg P., pp. 121150. Wiley-VCH, Weinheim, Germany.
Steel H., Verdoodt F., Čerevková A., Couvreur M., Fonderie P., Moens T. & Bert W. (2013). Survival and colonization of nematodes in a composting process. Invertebr. Biol. 132(2), 108119.
Stein C., Finnenkötter A., Lowman J.P. & Hansen U. (2011). The pressure-weakening effect in super-Earths: consequences of a decrease in lower mantle viscosity on surface dynamics. Geophys. Res. Lett. 38, L21201.
Stevenson A. et al. (2015). Multiplication of microbes below 0.690 water activity: implications for terrestrial and extraterrestrial life. Environ. Microbiol. 17(2), 257277.
Valencia D., O'Connell R.J. & Sasselov D.D. (2007). Inevitability of plate tectonics on super-earths. ApJ 670, L45L48.
Vasseur D.A., DeLong J.P., Gilbert B., Greig H.S., Harley C.D.G., McCann K.S., Savage V., Tunney T.D. & O'Connor M.I. (2015). Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B 281, 20132612.
Vladilo G., Murante G., Silva L., Provenzale A., Ferri G. & Ragazzini G. (2013). The habitable zone of earth-like planets with different levels of atmospheric pressure. ApJ 767, 6587.
Vladilo G., Silva L., Murante G., Filippi L. & Provenzale A. (2015). Modeling the surface temperature of earth-like planets. ApJ 804, 50 (20 pp).
von Paris P., Grenfell J.L., Hedelt P., Rauer H., Selsis F. & Stracke B. (2013). Atmospheric constraints for the CO2 partial pressure on terrestrial planets near the outer edge of the habitable zone. Astron. Astrophys. 549, A94.
Walker J.C.G., Hays P.B. & Kasting J.F. (1981). A negative feedback mechanism for the long-term stabilization of Earth's surface temperature. J. Geophys. Res. 86(C10), 97769782.
Ward D.M. & Castenholz R.W. (2000). Cyanobacteria in geothermal habitats. In The Ecology of Cyanobacteria, ed. Whitton B.A. & Potts M., pp. 3759. Kluwer Academic Publishers, Dordrecht, Netherlands.
Watson A.J. & Lovelock J.E. (1983). Biological homeostasis of the global environment: the parable of Daisyworld. Tellus B 35B, 284289.
Williams D.M. & Kasting J.F. (1997). Habitable planets with high obliquities. Icarus 129, 254267.
Williams D.M. & Pollard D. (2002). Earth-like worlds on eccentric orbits: excursions beyond the habitable zone. IJAsB 1, 6169.
Wood A.J., Ackland G.J., Dyke J.G., Williams H.T.P. & Lenton T.M. (2008). Daisyworld: a review. Rev. Geophys. 46, RG1001. doi: 10.1029/2006RG000217.
Wordsworth R. & Pierrehumbert R. (2014). Abiotic oxygen-dominated atmospheres on terrestrial habitable zone planets. ApJ 785, L20.
Yang J., Boué G., Fabrycky D.C. & Abbot D.S. (2014). Strong dependence of the inner edge of the habitable zone on planetary rotation rate. ApJL 787, L2.
Zank G.P. & Frisch P.C. (1999). Consequences of a change in the galactic environment of the Sun. Astrophys. J. 518, 965973.
Zsom A., Seager S., de Wit J. & Stamenkovic V. (2013). Towards the minimum inner edge distance of the habitable zone. ApJ 778, 109.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 5
Total number of PDF views: 85 *
Loading metrics...

Abstract views

Total abstract views: 655 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd January 2018. This data will be updated every 24 hours.