Skip to main content Accessibility help
×
Home

Gamma-ray bursts as a threat to life on Earth

  • B.C. Thomas (a1)

Abstract

Gamma-ray bursts (GRBs) are likely to have made a number of significant impacts on the Earth during the last billion years. The gamma radiation from a burst within a few kiloparsecs would quickly deplete much of the Earth's protective ozone layer, allowing an increase in solar ultraviolet radiation reaching the surface. This radiation is harmful to life, damaging DNA and causing sunburn. In addition, NO2 produced in the atmosphere would cause a decrease in visible sunlight reaching the surface and could cause global cooling. Nitric acid rain could stress portions of the biosphere, but the increased nitrate deposition could be helpful to land plants. We have used a two-dimensional atmospheric model to investigate the effects on the Earth's atmosphere of GRBs delivering a range of fluences, at various latitudes, at the equinoxes and solstices, and at different times of day. We have estimated DNA damage levels caused by increased solar UVB radiation, reduction in solar visible light due to NO2 opacity, and deposition of nitrates through rainout of HNO3. In this paper we give a concise review of this work and discuss current and future work on extending and improving our estimates of the terrestrial impact of a GRB.

Copyright

References

Hide All
Band, D. et al. (1993). BATSE observations of gamma-ray burst spectra. I – Spectral diversity. Astrophys. J. 413, 281292.
Behrenfeld, M., Boss, E., Siegel, D.A. & Shea, D.M. (2005). Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochem. Cy. 19, GB1006.
Berger, E. et al. (2007). The ERO Host Galaxy of GRB 020127: implications for the metallicity of GRB progenitors. Astrophys. J. 660, 504508 (http://arxiv.org/abs/astro-ph/0609170).
Bloom, J.S. et al. (2009). Observations of the naked-eye GRB 080319B: implications of Nature's brightest explosion. Astrophys. J. 691, 723737 (http://arxiv.org/abs/0811.1044v2).
Campana, S. et al. (2008). Outliers from the mainstream: how a massive star can produce a gamma-ray burst. Astrophys. J. Lett. 683, L9L12 (http://arxiv.org/abs/0805.4698).
Cenko, S.B. et al. (2008). GRBs 070429B and 070714B: the high end of the short-duration gamma-ray burst redshift distribution. Astrophys. J. Lett. submitted (http://arxiv.org/abs/0802.0874).
Chapman, R., Priddey, R.S. & Tanvir, N.R. (2008). Short gamma-ray bursts from SGR giant flares and neutron star mergers: two populations are better than one. Mon. Not. Roy. Astron. Soc. 395, 15151522 (http://arxiv.org/abs/0802.0008).
Chapman, R., Tanvir, R.N., Priddey, R.S. & Levan, A.J. (2007). How common are long gamma-ray bursts in the local universe? Mon. Not. Roy. Astron. Soc. Lett. 382, L21L25 (http://arxiv.org/abs/0708.2106).
Coohill, T.P. (1991). Photobiology school. Action spectra again? Photochem. Photobiol. 54, 859870.
Dermer, C.D. & Holmes, J.M. (2005). Cosmic rays from gamma-ray bursts in the Galaxy. Astrophys. J. Lett. 628, L21L24 (http://arxiv.org/abs/astro-ph/0504158).
Ejzak, L.M., Melott, A.L., Medvedev, M.V. & Thomas, B.C. (2007). Terrestrial Consequences of Spectral and Temporal Variability in Ionizing Photon Events. Astrophys. J. 654, 373384 (http://arxiv.org/abs/astro-ph/0604556).
Galante, D. & Horvath, J.E. (2007). Biological effects of gamma-ray bursts: distances for severe damage on the biota. Int. J. Astrobiol. 6, 1926 (http://arxiv.org/abs/astro-ph/0512013).
Gehrels, N., Laird, C.M., Jackman, C.H., Cannizzo, J.K., Mattson, B.J. & Chen, W. (2003). Ozone depletion from nearby supernovae. Astrophys. J. 585, 11691176 (http://arxiv.org/abs/astro-ph/0211361).
Kouveliotou, C., Meegan, C.A. & Fishman, G.J. (1993). Identification of two classes of gamma-ray bursts. Astrophys. J. Lett. 413, L101L104.
Levan, A.J. (2008). On the nature of the short-duration GRB 050906. Mon. Not. Roy. Astron. Soc. 384, 541547 (http://arxiv.org/abs/0705.1705).
Melott, A.L. & Thomas, B.C. (2009). Late Ordovician geographic patterns of extinction compared with simulations of astrophysical ionizing radiation damage. Paleobiology 35, 311320 (http://arxiv.org/abs/0809.0899).
Melott, A.L., Thomas, B.C., Hogan, D.P., Ejzak, L.M. & Jackman, C.H. (2005). Climatic and biogeochemical effects of a galactic gamma ray burst. Geophys. Res. Lett. 32, L14808 (http://arxiv.org/abs/astro-ph/0503625).
Melott, A.L., Lieberman, B., Laird, C., Martin, L., Medvedev, M., Thomas, B., Cannizzo, J., Gehrels, N. & Jackman, C. (2004). Did a gamma-ray burst initiate the late Ordovician mass extinction? Int. J. Astrobiol. 3, 5561 (http://arxiv.org/abs/astro-ph/0309415).
Meszaros, P. (2001). Gamma-ray bursts: accumulating afterglow implications, progenitor clues, and prospects. Science 291, 7984 (http://arxiv.org/abs/astro-ph/0102255).
Neale, P.J. (2000). Spectral weighting functions for quantifying effects of UV radiation in marine ecosystems. In The Effects of UV Radiation in the Marine Environment, Environ. Chem. Ser., eds de Mora, S.J. et al. , p. 72. Cambridge University Press, Cambridge.
O'Brien, P.T. & Willingale, R. (2007). Gamma-ray bursts in the Swift era. Astrophys. Space Sci. 311, 167175.
Piran, T. (2005). The physics of gamma-ray bursts. Rev. Mod. Phys. 76, 11431210 (http://arxiv.org/abs/astro-ph/0405503).
Reid, G.C. & McAfee, J.R. (1978). Effects of intense stratospheric ionisation events. Nature 275, 489492.
Scalo, J. & Wheeler, J.C. (2002). Astrophysical and astrobiological implications of gamma-ray burst properties. Astrophys. J. 566, 723737 (http://arxiv.org/abs/astro-ph/9912564).
Setlow, R.B. (1974). The wavelengths in sunlight effective in producing skin cancer: A theoretical analysis. Proc. Nat. Acad. Sci. USA 71, 33633366.
Smith, D.S., Scalo, J. & Wheeler, J.C. (2004). Transport of ionizing radiation in terrestrial-like exoplanet atmospheres. Icarus 171, 229253 (http://arxiv.org/abs/astro-ph/0308311).
Smith, R.C., Baker, K.S., Holm-Hansen, O. & Olson, R. (1980). Photoinhibition of photosynthesis in natural waters. Photochem. Photobio. 31, 585592.
Thomas, B.C. & Honeyman, M.D. (2008). Amphibian nitrate stress as an additional terrestrial threat from astrophysical ionizing radiation events? Astrobiology 8, 731733 (http://arxiv.org/abs/0804.3604).
Thomas, B.C. & Melott, A.L. (2006). Gamma-ray bursts and terrestrial planetary atmospheres. New J. Phys. 8, 120133 (http://arxiv.org/abs/astro-ph/0601711).
Thomas, B.C. et al. (2005a). Terrestrial ozone depletion due to a Milky Way gamma-ray burst. Astrophys. J. Lett. 622, L153L156 (http://arxiv.org/abs/astro-ph/0411284).
Thomas, B.C. et al. (2005b). Gamma-ray bursts and the Earth: Exploration of atmospheric, biological, climatic and biogeochemical effects. Astrophys. J. 634, 509533 (http://arxiv.org/abs/astro-ph/0505472).
Thorsett, S.E. (1995). Terrestrial implications of cosmological gamma-ray bursts. Astrophys. J. Lett. 444, L53L55 (http://arxiv.org/abs/astro-ph/9501019).
Vincent, W.F. & Neale, P.J. (2000). Mechanisms of UV damage to aquatic organisms. In The Effects of UV Radiation in the Marine Environment, Environ. Chem. Ser., eds de Mora, S.J. et al. , p. 149. Cambridge University Press, Cambridge.
Virgili, F.J., Liang, E.-W. & Zhang, B. (2009). Low-luminosity gamma-ray bursts as a distinct GRB population: a Monte Carlo analysis. Mon. Not. Roy. Astron. Soc. 392, 91–103 (http://arxiv.org/abs/0801.4751).
Zhang, Z.-B. & Choi, C.-S. (2008). An analysis of the durations of swift gamma-ray bursts. Astron. Astrophys. 484, 293297 (http://arxiv.org/abs/0708.4049).

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed