Skip to main content
    • Aa
    • Aa

Global warming as a detectable thermodynamic marker of Earth-like extrasolar civilizations: the case for a telescope like Colossus

  • Jeff R. Kuhn (a1) and Svetlana V. Berdyugina (a2) (a3)

Earth-like civilizations generate heat from the energy that they utilize. The thermal radiation from this heat can be a thermodynamic marker for civilizations. Here we model such planetary radiation on Earth-like planets and propose a strategy for detecting such an alien unintentional thermodynamic electromagnetic biomarker. We show that astronomical infrared (IR) civilization biomarkers may be detected within an interestingly large cosmic volume using a 70 m-class or larger telescope. In particular, the Colossus telescope with achievable coronagraphic and adaptive optics performance may reveal Earth-like civilizations from visible and IR photometry timeseries’ taken during an exoplanetary orbit period. The detection of an alien heat signature will have far-ranging implications, but even a null result, given 70 m aperture sensitivity, could also have broad social implications.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Global warming as a detectable thermodynamic marker of Earth-like extrasolar civilizations: the case for a telescope like Colossus
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Global warming as a detectable thermodynamic marker of Earth-like extrasolar civilizations: the case for a telescope like Colossus
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Global warming as a detectable thermodynamic marker of Earth-like extrasolar civilizations: the case for a telescope like Colossus
      Available formats
The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence
Corresponding author
Hide All
Anglada-EscudeG., ArriagadaP., VogtS., RiveraE., ButlerP., CraneJ.D., ShectmanS.A., ThompsonI.B., MinnitiD., HaghighipourN. et al. (2012). A planetary system around the nearby M dwarf GJ 667C with at least one super-Earth in its habitable zone. Astrophys. J. Lett. 751, L16.
Anglada-EscudeG., ArriagadaP., TuomiM., ZechmeisterM., JenkinsJ.S., OfirA., DreizlerS., GerlachE., MarvinC.J., ReinersA. et al. (2014). Two planets around Kapteyn's star: a cold and a temperate super-Earth orbiting the nearest halo red-dwarf. Mon. Not. R. Astron. Soc. 443, L89L93.
BackusP.R. & The Project Phoenix Team (2002). Project Phoenix SETI Observations from 1200 to 1750 MHz with the upgraded Arecibo telescope. In Single-Dish Radio Astronomy: Techniques and Applications, edited by Stanimirovic S., Altschuler D., Goldsmith P., and Salter C.. ASP Conf. Series 278, pp. 525527.
BerdyuginaS.V., PeltJ. & TuominenI. (2002). Magnetic activity in the young solar analog LQ Hya. I. Active longitudes and cycles. Astron. Astrophys. 394, 505515.
BerdyuginaS.V., BerdyuginA.V., FluriD.M. & PiirolaV. (2011). Polarized reflected light from the exoplanet HD189733b: first multi-color observations and confirmation of detection. Astrophys. J. Lett. 728, L6 (5 pp).
BerdyuginaS.V., KuhnJ.R., HarringtonD.M., Šantl-TemkivT. & MessersmithE.J. (2014). Remote sensing of life: polarimetric signatures of photosynthetic pigments as sensitive biomarkers. Int. J. Astrobio., this volume.
BonfilsX., Lo CurtoG., CorreiaA.C.M., LaskarJ., UdryS., DelfosseX., ForveilleT., Astudillo-DefruN., BenzW., BouchyF. et al. (2013). The HARPS search for southern extra-solar planets. XXXIV. A planet system around the nearby M dwarf GJ 163, with a super Earth possibly in the habitable zone. Astron. Astrophys. 556, A110.
CarriganR.A.Jr. (2009). IRAS-based whole-sky upper-limit on Dyson Spheres. Astrophys. J. 698, 20752086.
Colossus (2012). A 74 m filled aperture interferometric telescope.
DelfosseX., BonfilsX., ForveilleTh., UdryS., MayorM., BouchyF., GillonM., LovisC., NevesV., PepeF. et al. (2013). The HARPS search for southern extra-solar planets XXXIII. Super-Earths around the M-dwarf neighbors Gl433 and Gl667C. Astron. Astrophys., 553, id.A8, 15 pp.
DysonF. (1960). Search for artificial sources of infrared radiation. Science 131, 16671668.
E-ELT: European Extremely Large Telescope.
FerozF. & HobsonM.P. (2014). Bayesian analysis of radial velocity data of GJ667C with correlated noise: evidence for only two planets. Mon. Not. R. Astron. Soc., 437, 35403549.
ForganD.H. & NicholR.C. (2011). A failure of serendipity: the Square Kilometre Array will struggle to eavesdrop on human-like extraterrestrial intelligence. Int. J. Astrobiol. 10, 7781.
GantzJ.F., ChuteC., ManfredizA., MintonS., ReinselD., SchlichtingW. & TonchevaA. (2008). The diverse and exploding digital universe. IDC White Paper.
Gemini: Gemini South's Secondary Mirror Sports Shiny Silver Coat.
GMT: Giant Magellan Telescope.
Gómez-LealI., PalléE. & SelsisF. (2012). Photometric variability of the disk-integrated thermal emission of the Earth. Astrophys. J. 752, 28, 11 pp.
GouldJ.L. & GouldC.G. (2007). Animal Architects: Building and the Evolution of Intelligence. Basic Books, New York, 324 p.
GuyonO., PluzhnikE.A., KuchnerM.J., CollinsB. & RidgwayS.T. (2006). Theoretical limits on extrasolar terrestrial planet detection with coronagraphs. Astrophys. J. Suppl. 167, 8199.
IEA (2013). International Energy Agency. Key World Energy Statistics.
KardashevN.S. (1964). Transmission of information by extraterrestrial civilizations. Sov. Astron. 8, 217221.
KastingJ.F., KopparapuR., RamirezR.M. & HarmanC. (2014). Remote life detection criteria, habitable zone boundaries, and the frequency of earthlike planets around M and late-K stars. Proc. Natl. Acad. Soc. U.S.A., 111, 1264112646.
KimH.H. (1992). Urban heat island. Int. J. Remote Sens. 13, 23192336.
KopparapuR.K., RamirezR.M., SchottelKotteJ., KastingJ.F., Domagal-GoldmanS. & EymetV. (2014). Habitable zones around main-sequence stars: dependence on planetary mass. Astrophys. J. Lett. 787, L29, 6 pp.
KorbJ. (2003). Thermoregulation and ventilation of termite mounds. Naturwissenschaften 90, 212219.
KuhnJ.R. & HawleyS.L. (1999). Some astronomical performance advantages of off-axis telescopes. Publ. Astron. Soc. Pacific 111, 601620.
KuhnJ.R., MorettoG., RacineR., RoddierF. & CoulterR. (2001). Concepts for a large-aperture, high dynamic range telescope. Publ. Astron. Soc. Pacific 113(790), 14861510.
KuhnJ.R., BerdyuginaS.V., HarlingtenC. & HallidayD. (2013). Finding ETs with infrared light. Astronomy 6, 3135.
KuhnJ.R., BerdyuginaS.V., LangloisM., MorettoG., ThiebautE., HarlingtenC. & HallidayD. (2014). Looking beyond 30 meter class telescopes: the Colossus project. In Astronomical Telescopes and Instrumentation, Proc. SPIE Ground-based and Airborne Telescopes V, 9145, 91451G.
LoebA. & ZaldarriagaM. (2007). Eavesdropping on radio broadcasts from galactic civilizations with upcoming observatories for redshifted 21 cm radiation. J. Cosmol. Astropart. Phys. 1, 20.
MacintoshB., GrahamJ., PalmerD., DoyonR., GavelD., LarkinJ., OppenheimerB., SaddlemyerL., WallaceJ.K., BaumanB. et al. (2007). Adaptive optics for direct detection of extrasolar planets: the Gemini Planet Finder. C. R. Phys. 8, 365373.
MalanimaP. (2011). Energy consumption and energy crisis in Roman world. In The Ancient Mediterranean Environment between Science and History, ed. HarrisW., Columbia Studies in the Classical Tradition, Brill, Columbia, 39, 1336.
MaruyamaK., NoriF. & VedralV. (2009). The physics of Maxwell's demon and information. Rev. Mod. Phys. 81, 123.
MichaudM.A.G. (2007). Contact with Alien Civilizations. Springer Science, NY.
MorettoG. & KuhnJ.R. (2014). Highly sensitive telescope designs for higher contrast observations. Adv. Opt. Technol. 3(3), 251264.
MorettoG., KuhnJ.R., ThiebautE., LangloisM., BerdyuginaS.V., HarlingtenC. & HallidayD. (2014). New strategies for an extremely large telescope dedicated to extremely high contrast: the Colossus project. Proc. SPIE, Ground-based and Airborne Telescopes V, 9145, 91451L9.
NASA (2014). NEO program data.
NealsonK.H. & ConradP.G. (1999). Life: past, present and future. Philos. Trans. R. Soc. Lond. B 354, 19231938.
O'NeillG.K. (2000). The High Frontier: Human Colonies in Space: Apogee Books Space Series 12, 3rd edn. Collector's Guide Publishing, Inc., Ontario, Canada, 184 p.
PepeF., LovisCh., SegransanD., BenzW., BouchyF., DumusqueX., MayorM., QuelozD., SantosN. & UdryS. (2011). The HARPS search for Earth-like planets in the habitable zone: I – very low-mass planets around HD20794, HD85512 and HD192310. Astron. Astrophys. 534, A58.
RizwanA.M., LeungD. & ChunhoL. (2008). A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 20, 120128.
RoelfsemaR., GislerD., PragtJ., SchmidH.M., BazzonA., DominikC., BaruffoloA., BeuzitJ.-L., ChartonJ., DohlenK. et al. (2011). The ZIMPOL high contrast imaging polarimeter for SPHERE: subsystem test results. In Techniques and Instrumentation for Detection of Exoplanets V, edited by Shaklan S., Proc. SPIE 8151: 81510N–81510N-13.
SchneiderJ., LégerA., FridlundM., WhiteG.J., EiroaC., HenningT., HerbstT., LammerH., LiseauR., ParesceF., et al. (2010). The far future of exoplanet direct characterization. Astrobiology 10, 121126.
ShklovskiiI.S. & SaganC. (1966). Intelligent Life in the Universe. Dell, NY.
SIMBAD: Astronomical Database.
TMT: Thirty Meter Telescope.
TuomiM., Anglada-EscudéG., GerlachE., JonesH.R.A., ReinersA., RiveraE.J., VogtS.S. & ButlerR.P. (2012). Habitable zone super-Earth candidate in a six-planet system around the K2.5V star HD 40307. Astron. Astrophys. 549, A48.
WittenmyerR.A., TuomiM., ButlerR.P. et al. (2014). GJ 832c: a super-Earth in the habitable zone. Astrophys. J. 791, 114 (11 pp).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 19
Total number of PDF views: 94 *
Loading metrics...

Abstract views

Total abstract views: 261 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st October 2017. This data will be updated every 24 hours.