Skip to main content Accessibility help
×
Home

High-resolution transmission spectrum of the Earth's atmosphere-seeing Earth as an exoplanet using a lunar eclipse

  • F. Yan (a1) (a2) (a3), R. A. E. Fosbury (a3), M. G. Petr-Gotzens (a3), G. Zhao (a1), W. Wang (a1), L. Wang (a1), Y. Liu (a1) and E. Pallé (a4) (a5)...

Abstract

With the rapid developments in the exoplanet field, more and more terrestrial exoplanets are being detected. Characterizing their atmospheres using transit observations will become a key datum in the quest for detecting an Earth-like exoplanet. The atmospheric transmission spectrum of our Earth will be an ideal template for comparison with future exo-Earth candidates. By observing a lunar eclipse, which offers a similar configuration to that of an exoplanet transit, we have obtained a high-resolution and high signal-to-noise ratio (SNR) transmission spectrum of the Earth's atmosphere. This observation was performed with the High Resolution Spectrograph at Xinglong Station, China during the total lunar eclipse in December 2011. We compare the observed transmission spectrum with our atmospheric model, and determine the characteristics of the various atmospheric species in detail. In the transmission spectrum, O2, O3, O2 · O2, NO2 and H2O are detected, and their column densities are measured and compared with the satellites data. The visible Chappuis band of ozone produces the most prominent absorption feature, which suggests that ozone is a promising molecule for the future exo-Earth characterization. Due to the high resolution and high SNR of our spectrum, several novel details of the Earth atmosphere's transmission spectrum are presented. The individual O2 lines are resolved and O2 isotopes are clearly detected. Our new observations do not confirm the absorption features of Ca II or Na I which have been reported in previous lunar eclipse observations. However, features in these and some other strong Fraunhofer line positions do occur in the observed spectrum. We propose that these are due to a Raman-scattered component in the forward-scattered sunlight appearing in the lunar umbral spectrum. Water vapour absorption is found to be rather weak in our spectrum because the atmosphere we probed is relatively dry, which prompts us to discuss the detectability of water vapour in Earth-like exoplanet atmospheres.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      High-resolution transmission spectrum of the Earth's atmosphere-seeing Earth as an exoplanet using a lunar eclipse
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      High-resolution transmission spectrum of the Earth's atmosphere-seeing Earth as an exoplanet using a lunar eclipse
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      High-resolution transmission spectrum of the Earth's atmosphere-seeing Earth as an exoplanet using a lunar eclipse
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
Allen, C.W. (1976). Astrophys. Quant.
Amekudzi, L. K., Bracher, A., Bramstedt, K., Rozanov, A., Bovensmann, H. & Burrows, J. P. (2008). Adv. Space Res. 41, 1921.
Bodhaine, B.A., Wood, N.B., Dutton, E.G. & Slusser, J.R. (1999). J. Atmos. Ocean. Technol. 16, 1854.
Bucholtz, A. (1995). Appl. Opt. 34, 2765.
Charbonneau, D., Brown, T.M., Noyes, R.W. & Gilliland, R.L. (2002). Astrophys. J. 568, 377.
Charbonneau, D. et al. (2009). Nature 462, 891.
Crutzen, P.J. (1979). Ann. Rev. Earth Planet. Sci. 7, 443.
Dumusque, X. et al. (2012). Nature 491, 207.
Fosbury, R., Koch, G. & Koch, J. (2011). Messenger 143, 27.
Fressin, F. et al. (2012). Nature 482, 195.
García Muñoz, A. & Pallé, E. (2011). J. Quant. Spec. Radiat. Transf. 112, 1609.
García Muñoz, A., Pallé, E., Zapatero Osorio, M.R. & Martín, E.L. (2011). Geophys. Res. Lett. 38, 14805.
García Muñoz, A., Zapatero Osorio, M. R., Barrena, R., Montañés-Rodríguez, P., Martín, E. L. & Pallé, E. (2012). Astrophys. J. 755, 103.
Gedzelman, S.D. & Vollmer, M. (2008). Appl. Opt. 47, 149.
Gerding, M., Alpers, M., Höffner, J. & von Zahn, U. (2001). Ann. Geophys. 19, 47.
Grainger, J.F. & Ring, J. (1962). Nature 193, 762.
Hedelt, P., von Paris, P., Godolt, M., Gebauer, S., Grenfell, J. L., Rauer, H., Schreier, F., Selsis, F. & Trautmann, T. (2013). Astron. Astrophys. 553, A9.
Howard, A.W. et al. (2012). Astrophys. J. Suppl. 201, 15.
Howe, A.R. & Burrows, A.S. (2012). Astrophys. J. 756, 176.
Jacquinet-Husson, N. et al. (2011). J. Quant. Spec. Radiat. Transf. 112, 2395.
Jones, A. E., Weller, R., Anderson, P. S., Jacobi, H.-W., Wolff, E. W., Schrems, O. & Miller, H. (2001). Geophys. Res. Lett. 28, 1499.
Kaltenegger, L. & Traub, W.A. (2009). Astrophys. J. 698, 519.
Kreidberg, L., Bean, J. L., Désert, J.-M., Benneke, B., Deming, D., Stevenson, K. B., Seager, S., Berta-Thompson, Z., Seifahrt, A. & Homeier, D. (2014). Nature 505, 69.
Langford, A. O., Schofield, R., Daniel, J. S., Portmann, R. W., Melamed, M. L., Miller, H. L., Dutton, E. G. & Solomon, S. (2007). Atmos. Chem. Phys. 7, 575.
Link, F. (1972). Adv. Astron. Astrophys. 9, 67.
Lovelock, J.E. (1965). Nature 207, 568.
Misra, A., Meadows, V., Claire, M. & Crisp, D. (2014). Astrobiology 14, 67.
Oppenheimer, C., Kyle, P., Tsanev, V., McGonigle, A.J.S., Mather, T. & Sweeney, D. (2005). Atmos. Environ. 39, 6000.
Orphal, J. (2003). J. Photochem. Photobiol. A: Chem. 157, 185.
Pallé, E., Zapatero Osorio, M.R., Barrena, R., Montañés-Rodríguez, P. & Martín, E.L. (2009). Nature 459, 814.
Plane, J. M. C., Gardner, C. S., Yu, J., She, C. Y., Garcia, R. R. & Pumphrey, H. C. (1999). J. Geophys. Res. 104, 3773.
Quintana, E.V. et al. (2014). Science 344, 277.
Rothman, L.S. et al. (2009). J. Quant. Spec. Radiat. Transf. 110, 533.
Seager, S. (2010). Exoplanet Atmos.: Phys. Processes. Princeton University Press, pp. 299–231.
Seager, S. & Deming, D. (2010). Ann. Rev. Astron. Astrophys. 48, 631.
Seager, S., Schrenk, M. & Bains, W. (2012). Astrobiology 12, 61.
Thalman, R. & Volkamer, R. (2013). Phys. Chem. Chem. Phys. 15, 15371.
Ugolnikov, O.S., Punanova, A.F. & Krushinsky, V.V. (2013). J. Quant. Spec. Radiat. Transf. 116, 67.
Vidal-Madjar, A. et al. (2010). Astron. Astrophys. 523, A57.
Voigt, S., Orphal, J. & Burrows, J. (2002). J. Photochem. Photobiol A: Chem. 149, 1.
Vollmer, M. & Gedzelman, S.D. (2008). Appl. Opt. 47, H52.
Wang, W., van Boekel, R., Madhusudhan, N., Chen, G., Zhao, G., and Henning, T. (2013). Astrophys. J. 770, 70.

Keywords

Related content

Powered by UNSILO

High-resolution transmission spectrum of the Earth's atmosphere-seeing Earth as an exoplanet using a lunar eclipse

  • F. Yan (a1) (a2) (a3), R. A. E. Fosbury (a3), M. G. Petr-Gotzens (a3), G. Zhao (a1), W. Wang (a1), L. Wang (a1), Y. Liu (a1) and E. Pallé (a4) (a5)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.