Skip to main content

Impact of assembly, testing and launch operations on the airborne bacterial diversity within a spacecraft assembly facility clean-room

  • David A. Newcombe (a1) (a2), Myron T. La Duc (a1), Parag Vaishampayan (a1) and Kasthuri Venkateswaran (a1)

In an effort to minimize the probability of forward contamination of pristine extraterrestrial environments, the National Aeronautics and Space Administration requires that all US robotic spacecraft undergo assembly, testing and launch operations (ATLO) in controlled clean-room environments. This study examines the impact of ATLO activity on the microbial diversity and overall bioburden contained within the air of the clean-room facility in which the Mars Exploration Rovers (MERs) underwent final preparations for launch. Air samples were collected from several facility locations and traditional culture-based and molecular methodologies were used to measure microbial burden and diversity. Surprisingly, the greatest estimates of airborne bioburden, as derived from ATP content and cultivation assays, were observed prior to the commencement of MER ATLO activities. Furthermore, airborne microbial diversity gradually declined from the initiation of ATLO on through to launch. Proteobacterial sequences were common in 16S rDNA clone libraries. Conspicuously absent were members of the Firmicutes phylum, which includes the genus Bacillus. In previous studies, species of this genus were repeatedly isolated from the surfaces of spacecraft and clean-room assembly facilities. Increased cleaning and maintenance initiated immediately prior to the start of ATLO activity could explain the observed declines in both airborne bioburden and microbial diversity.

Hide All
Ahearn D.G., Crow S.A., Simmons R.B., Price D.L., Mishra S.K. & Pierson D.L. (1997). Fungal colonization of air filters and insulation in a multi-story office building: production of volatile organics. Curr. Microbiol. 35, 305308.
Anonymous (1980). NASA standard procedures for the microbiological examination of space hardware. In Jet Propulsion Laboratory Communication, National Aeronautical and Space Administration. Pasadena, CA.
Appelbaum J. & Flood D.J. (1990). Solar-Radiation on Mars. Sol. Energy 45, 353363.
Aviation-Safety (2004). More research needed on the effects of air quality on airliner cabin occupants. Report to the subcommittee on Aviation, pp. 161. Washinton, DC: United States General Accounting Office.
Castro V.A., Thrasher A.N., Healy M., Ott C.M. & Pierson D.L. (2004). Microbial characterization during the early habitation of the International Space Station. Microb. Ecol. 47, 119126.
Christensen E.A., Gerner-Smidt P. & Kristensen H. (1991). Radiation resistance of clinical Acinetobacter spp.: a need for concern? J. Hosp. Infect. 18, 8592.
Coenye T. & Vandamme P. (2003). Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ. Microbiol. 5, 719729.
Crawford R.L. (2005). Microbial diversity and its relationship to planetary protection. Appl. Environ. Microbiol. 71, 41634168.
Favero M.S., Puleo J.R., Marshall J.H. & Oxborrow G.S. (1966). Comparative levels and types of microbial contamination detected in industrial clean rooms. Appl. Microbiol. 14, 539551.
Good I.J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika 40, 237264.
Heck J.K., van Belle G. & Simberloff D. (1975). Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56, 14591461.
Jawad A., Snelling A.M., Heritage J. & Hawkey P.M. (1998). Exceptional desiccation tolerance of Acinetobacter radioresistens. J. Hosp. Infect. 39, 235240.
Kempf M.J., Chen F., Kern R. & Venkateswaran K. (2005). Recurrent isolation of hydrogen peroxide-resistant spores of Bacillus pumilus from a spacecraft assembly facility. Astrobiology 5, 391405.
Kesavan J., Carlile D., Doherty R.W., Hottell A.K. & Sutton T. (2003). Characteristics and sampling efficiencies of aerosol samplers manufactured by Mesosystem Technology, Inc., pp. ADA415715. A. P. G. Edgewood Chemical Biological Center, Maryland, Research and Technology Directorate: Defence Technical Information Center.
Kramer A., Schwebke I. & Kampf G. (2006). How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis. 6, 130137.
La Duc M.T., Dekas A., Osman S., Moissl C., Newcombe D. & Venkateswaran K. (2007a). Isolation and characterization of bacteria capable of tolerating the extreme conditions of clean room environments. Appl. Environ. Microbiol. 73, 26002611.
La Duc M.T., Kern R. & Venkateswaran K. (2004a). Microbial monitoring of spacecraft and associated environments. Microbial. Ecol. 47, 150158.
La Duc M.T., Nicholson W., Kern R. & Venkateswaran K. (2003). Microbial characterization of the Mars Odyssey spacecraft and its encapsulation facility. Environ. Microbiol. 5, 977985.
La Duc M.T., Satomi M., Agata N. & Venkateswaran K. (2004b). gyrB as a phylogenetic discriminator for members of the Bacillus anthracis-cereus-thuringiensis group. J. Microbiol. Methods 56, 383394.
La Duc M., Stucker T. & Venkateswaran K. (2007b). Molecular bacterial diversity and bioburden of commercial airliner cabin air. Can. J. Microbiol. 53, 12591271.
Lane D.J. (1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, ed. Stackebrandt E. & Goodfellow M., pp. 115163. John Wiley & Sons: New York, NY.
Lawley B., Ripley S., Bridge P. & Convey P. (2004). Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Appl. Environ. Microbiol. 70, 59635972.
Ledrich M.L., Stemmler S., Laval-Gilly P., Foucaud L. & Falla J. (2005). Precipitation of silver-thiosulfate complex and immobilization of silver by Cupriavidus metallidurans CH34. Biometals 18, 643650.
Lozupone C., Hamady M. & Knight R. (2006). UniFrac – an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7, 371.
Lozupone C. & Knight R. (2005). UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 82288235.
Moissl C., Bruckner J. & Venkateswaran K. (2008). Archaeal community analysis of spacecraft assembly facilities. Intern. Soc. Microbial. Ecol. 2, 115119.
Moissl C., Hosoya N., Bruckner J., Stuecker T., Roman M. & Venkateswaran K. (2007a). Molecular microbial community structure of the regenerative enclosed life support module simulator (REMS) air system. Int. J. Astrobiol. 6, 131145.
Moissl C., La Duc M.T., Osman S., Dekas A.E. & Venkateswaran K. (2007b). Molecular bacterial community analysis of clean rooms where spacecraft are assembled. FEMS Microbiol. Ecol. 61, 509521.
NASA-KSC (1999). Launch Site Requirement Planning Group, Facilities handbook of Payload Hazardous Servicing Facility (PHSF), K-STSM-14.1.15 rev D. NASA-KSC: KSC, Cape Canaveral, FL.
Newcombe D.A., Schuerger A.C., Benardini J.N., Dickinson D., Tanner R. & Venkateswaran K. (2005). Survival of spacecraft-associated microorganisms under simulated martian UV irradiation. Appl. Environ. Microbiol. 71, 81478156.
Osman S., Duc M.T.L., Dekas A., Newcombe D. & Venkateswaran K. (2008a). Microbial bioburden and diversity of commercial airline cabin air during short- and long-duration of travel. ISME J. 2, 482497.
Osman S., Peeters Z., La Duc M.T., Mancinelli R., Ehrenfreund P. & Venkateswaran K. (2008b). Effect of shadowing on the survival of bacteria to conditions simulating Martian atmosphere and UV-radiation. Appl. Environ. Microbiol. 74, 959970.
Oxborrow G.S., Fields N.D., Puleo J.R. & Herring C.M. (1975). Quantitative relationship between airborne viable and total particles. Health Lab. Sci. 12, 4751.
Patel M.R., Zarnecki J.C. & Catling D.C. (2002). Ultraviolet radiation on the surface of Mars and the Beagle 2 UV sensor. Planetary Space Sci. 50, 915927.
Pierson D.L. (2001). Microbial contamination of spacecraft. Gravit. Space Biol. Bull. 14, 16.
Poirel L., Figueiredo S., Cattoir V., Carattoli A. & Nordmann P. (2008). Acinetobacter radioresistens as a silent source of carbapenem resistance for Acinetobacter spp. Antimicrob. Agents Chemother. 52, 12521256.
Puleo J.R., Fields N.D., Bergstrom S.L., Oxborrow G.S., Stabekis P.D. & Koukol R. (1977). Microbiological profiles of the Viking spacecraft. Appl. Environ. Microbiol. 33, 379384.
References S., Daubaras D., Hershberger C., Kitano K. & Chakrabarty A. (1995). Sequence analysis of a gene cluster involved in metabolism of 2, 4, 5-trichlorophenoxyacetic acid by Burkholderia cepacia AC1100. Appl. Environ. Microbiol. 61, 12791289.
Rontó G., Bérces A., Lammer H., Cockell C.S., Molina-Cuberos G.J., Patel M.R. & Selsis F. (2003). Solar UV Irradiation Conditions on the Surface of Mars. Photochem. Photobiol. 77, 3440.
Rossello-Mora R. & Amann R. (2001). The species concept for prokaryotes. FEMS Microbiol. Rev. 25, 3967.
Ruimy R., Breittmayer V., Elbaze P., Lafay B., Boussemart O., Gauthier M. & Christen R. (1994). Phylogenetic analysis and assessment of the genera Vibrio, Photobacterium, Aeromonas, and Plesiomonas deduced from small-subunit rRNA sequences. Int. J. Syst. Bacteriol. 44, 416426.
Rummel J.D. (1992). Planetary Protection Policy (U.S.A.). Adv. Space Res. 12, 129131.
Satomi M., La Duc M.T. & Venkateswaran K. (2004). Description of Bacillus safensis, sp. nov. a novel spore-forming bacterium that persists in spacecraft and associated environments. In General Meeting of the American Society for Microbiology. New Orleans, LA: American Society for Microbiology.
Schloss P.D. & Handelsman J. (2005). Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 71, 15011506.
Simmons R.B., Price D.L., Noble J.A., Crow S.A. & Ahearn D.G. (1997). Fungal colonization of air filters from hospitals. Am. Ind. Hyg. Assoc. J. 58, 900904.
Stackebrandt E. & Goebel B.M. (1994). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Evol. Microbiol. 44, 846849.
Steinle P., Stucki G., Stettler R. & Hanselmann K.W. (1998). Aerobic mineralization of 2,6-dichlorophenol by Ralstonia sp. strain RK1. Appl. Environ. Microbiol. 64, 25662571.
Swofford D. (1990). PAUP: Phylogenetic analysis using parsimony, version 2.0. Computer program distributed by the Illinois Natural Survey, Champaign, IL.
Valadez V.A., Thrasher A.N., Ott C.M. & Pierson D.L. (2002). Evaluation of bacterial diversity aboard the International Space Station. In General Meeting of the American Society for Microbiology, Salt Lake City, UT.
Venkateswaran K., Hattori N., La Duc M.T. & Kern R. (2003). ATP as a biomarker of viable microorganisms in clean-room facilities. J. Microbiol. Meth. 52, 367377.
Venkateswaran K., Satomi M., Chung S., Kern R., Koukol R., Basic C. & White D. (2001). Molecular microbial diversity of a spacecraft assembly facility. Syst. Appl. Microbiol. 24, 311320.
Verdenelli M.C., Cecchini C., Orpianesi C., Dadea G.M. & Cresci A. (2003). Efficacy of antimicrobial filter treatments on microbial colonization of air panel filters. J. Appl. Microbiol. 94, 915.
Walzer G., Rosenberg E. & Ron E.Z. (2006). The Acinetobacter outer membrane protein A (OmpA) is a secreted emulsifier. Environ. Microbiol. 8, 10261032.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 3
Total number of PDF views: 17 *
Loading metrics...

Abstract views

Total abstract views: 203 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th January 2018. This data will be updated every 24 hours.