Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 4
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.


    Baqué, Mickael Verseux, Cyprien Böttger, Ute Rabbow, Elke de Vera, Jean-Pierre Paul and Billi, Daniela 2016. Preservation of Biomarkers from Cyanobacteria Mixed with Mars­Like Regolith Under Simulated Martian Atmosphere and UV Flux. Origins of Life and Evolution of Biospheres, Vol. 46, Issue. 2-3, p. 289.

    Rabbow, Elke Parpart, André and Reitz, Günther 2016. The Planetary and Space Simulation Facilities at DLR Cologne. Microgravity Science and Technology, Vol. 28, Issue. 3, p. 215.

    Beckstead, Ashley A. Zhang, Yuyuan de Vries, Mattanjah S. and Kohler, Bern 2016. Life in the light: nucleic acid photoproperties as a legacy of chemical evolution. Phys. Chem. Chem. Phys., Vol. 18, Issue. 35, p. 24228.


Impact shocked rocks as protective habitats on an anoxic early Earth

  • Casey C. Bryce (a1), Gerda Horneck (a2), Elke Rabbow (a2), Howell G. M. Edwards (a3) (a4) and Charles S. Cockell (a1)
  • DOI:
  • Published online: 14 May 2014

On Earth, microorganisms living under intense ultraviolet (UV) radiation stress can adopt endolithic lifestyles, growing within cracks and pore spaces in rocks. Intense UV irradiation encountered by microbes leads to death and significant damage to biomolecules, which also severely diminishes the likelihood of detecting signatures of life. Here we show that porous rocks shocked by asteroid or comet impacts provide protection for phototrophs and their biomolecules during 22 months of UV radiation exposure outside the International Space Station. The UV spectrum used approximated the high-UV flux on the surface of planets lacking ozone shields such as the early Earth. These data provide a demonstration that endolithic habitats can provide a refugium from the worst-case UV radiation environments on young planets and an empirical refutation of the idea that early intense UV radiation fluxes would have prevented phototrophs without the ability to form microbial mats or produce UV protective pigments from colonizing the surface of early landmasses.

Corresponding author
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

L.V. Berkner & L.C. Marshall (1965). History of major atmospheric components. Proc. Natl. Acad. Sci. USA 53, 12151225.

B. Budel & A. Henssen (1983). Chroococcidiopsis (Cyanophyceae), a phycobiont in the lichen family Lichinaceae. Phycologia 22, 367375.

R. Buick (2008). When did oxygenic photosynthesis evolve? Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 27312743.

C.S. Cockell & G. Horneck (2001). The history of the UV radiation climate of the Earth – theoretical and space-based observations. Photochem. Photobiol. 73(4), 447451.

C.S. Cockell & G.R. Osinski (2007). Impact-induced impoverishment and transformation of a sandstone habitat for lithophytic microorganisms. Meteorit. Planet. Sci. 42, 19851993.

C.S. Cockell , P. Lee , G. Osinski , G. Horneck & P. Broady (2002). Impact-induced microbial endolithic habitats. Meteor. Planet. Sci. 37, 12871298.

C.S. Cockell , A.C. Schuerger , D. Billi , E.I. Friedmann & C. Panitz (2005). Effects of a simulated Martian UV flux on the cyanobacterium, Chroococcidiopsis sp 029. Astrobiol. 5, 127140.

C.S. Cockell , P. Rettberg , E. Rabbow & K. Olsson-Francis (2011). Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early Earth. ISME J. 5, 16711682.

E.I. Friedmann (1980). Endolithic microbial life in hot and cold deserts. Orig. Life 10, 223235.

E.I. Friedmann & R. Ocampo-Friedmann (1995). A primitive cyanobacterium as pioneer microorganism for terraforming Mars. Adv. Space Res. 15(3), 243246.

G. Horneck , D.M. Klaus & R.L. Mancinelli (2010). Space microbiology. Microbiol. Mol. Biol. Rev. 74, 121156.

S.E. Jorge-Villar & H.G.M. Edwards (2006). Raman spectroscopy in Astrobiology. Anal. Bioanal. Chem. 384, 100113.

J.F. Kasting & J.L. Siefert (2002). Life and the evolution of Earth's atmosphere. Science 296, 10661068.

D.J. Korbie & J.S. Mattick (2008). Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat. Protoc. 3(9), 14521454.

G.R. Osinski , P. Lee , J.G. Spray , J. Parnell , D.S.S. Lim , T.E. Bunch , C.S. Cockell & B. Glass (2005). Geological overview and cratering model for the Haughton impact structure, Devon Island, Canadian High Arctic. Met. Planet. Sci. 40, 17591776.

A.Pontefract , G.R.Osinski , P.Lindgren , J.Parnell , C.S.Cockell & G.Southam (2012). The effects of meteorite impacts on the availability of bioessential elements for endolithic organisms. Met. Planet. Sci. 47, 16811691.

E. Rabbow (2009). EXPOSE, an astrobiological exposure facility on the International Space Station – from proposal to flight. Orig. Life. Evol. Biosph. 39, 581–98.

P. Rettberg , G. Horneck , W. Strauch , R. Facius & G. Seckmeyer (1998). Simulation of planetary UV radiation climate on the example of the early Earth. Adv. Space Res. 22, 335339.

Y. Tamaru , Y. Takani , T. Yoshida & T. Sakomoto (2005). Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl. Environ. Microbiol. 71, 73277333.

P. Vítek , H.G.M. Edwards , J. Jehlicka , C. Ascaso , A. De los Ríos , S. Valea , S.E. Jorge-Villar , A.F. Davila & J. Wierzchos (2010). Microbial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy. Philos. Trans. R. Soc. A 368(1922), 32053221.

G. Wang , Z. Hao , Z. Huang , L. Chen , X. Li , C. Hu & Y. Liu (2010). Raman spectroscopic analysis of a desert cyanobacterium Nostoc sp. in response to UVB radiation. Astrobiology 10(8), 783787.

F. Westall , C. E. J. de Ronde , G. Southam , N. Grassineau , M. Colas , C. S. Cockell & H. Lammer (2006). Implications of a 3.472–3.333-Gyr-old subaerial microbial mat from the Barbeton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Philos. Trans. R. Soc. B 361, 18571875.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *