Skip to main content Accessibility help

Life is determined by its environment

  • John S. Torday (a1) and William B. Miller (a2)


A well-developed theory of evolutionary biology requires understanding of the origins of life on Earth. However, the initial conditions (ontology) and causal (epistemology) bases on which physiology proceeded have more recently been called into question, given the teleologic nature of Darwinian evolutionary thinking. When evolutionary development is focused on cellular communication, a distinctly different perspective unfolds. The cellular communicative-molecular approach affords a logical progression for the evolutionary narrative based on the basic physiologic properties of the cell.

Critical to this appraisal is recognition of the cell as a fundamental reiterative unit of reciprocating communication that receives information from and reacts to epiphenomena to solve problems. Following the course of vertebrate physiology from its unicellular origins instead of its overt phenotypic appearances and functional associations provides a robust, predictive picture for the means by which complex physiology evolved from unicellular organisms. With this foreknowledge of physiologic principles, we can determine the fundamentals of Physiology based on cellular first principles using a logical, predictable method. Thus, evolutionary creativity on our planet can be viewed as a paradoxical product of boundary conditions that permit homeostatic moments of varying length and amplitude that can productively absorb a variety of epigenetic impacts to meet environmental challenges.


Corresponding author


Hide All
Albrecht-Buehler, G. (1994). Cellular infrared detector appears to be contained in the centrosome. Cell Motil. Cytoskel. 27, 262–71.
Berkowitz, M.L. & Vácha, R. (2012). Aqueous solutions at the interface with phospholipid bilayers. Acc. Chem. Res. 45, 7482.
Burchell, M.J. (2006). Whither the Drake Equation? Int. J. Astrobiology 5, 243250.
Burkholder, T.J. (2003). Permeability of C2C12 myotube membranes is influenced by stretch velocity. Biochem. Biophys. Res. Commun. 305, 266270.
Burkholder, T.J. (2007). Mechanotransduction in skeletal muscle. Front. Biosci. 12, 174191.
Cannon, W.B. (1932). The Wisdom of the Body. The Norton Library, Norton, MA.
Cantley, L. & Hunter, T. (2014). Signal Transduction. Cold Spring Harbor Press, New York.
Case, R.M., Eisner, D., Gurney, A., Jones, O., Muallem, S. & Verkhratsky, A. (2007). Evolution of calcium homeostasis: from birth of the first cell to an omnipresent signaling system. Cell Calcium 42, 345350.
Cavalier-Smith, T. (2009). Predation and eukaryote cell origins: a coevolutionary perspective. Int. J. Biochem. Cell Biol. 41, 307322.
Chaban, V.V., Cho, T., Reid, C.B. & Norris, K. (2013). Physically disconnected non-diffusible cell-to-cell communication between neuroblastoma SH-SY5Y and DRG primary sensory neurons. Am. J. Transl. Res. 5, 6979.
Chapman, M.J. & Margulis, L. (1998). Morphogenesis by symbiogenesis. Int. Microbiol. 1, 319326.
Ciapa, B. & Chiri, S. (2000). Egg activation: upstream of the fertilization calcium signal. Biol. Cell 92, 215–33.
Cullen, P.J. & Lockyer, P.J. (2002). Integration of calcium and Ras signalling. Nat. Rev. Mol. Cell Biol. 3, 339348.
De Duve, C. (1969). Evolution of the peroxisome. Ann. N. Y. Acad. Sci. 168, 369381.
Dubey, G.P. & Ben-Yehuda, S. (2011). Intercellular nanotubes mediate bacterial communication. Cell 4, 590600.
Farhadi, A. (2014). Non-chemical distant cellular interactions as a potential confounder of cell biology experiments. Front. Physiol. 5, 405407.
Fels, D. (2009). Cellular communication through light. PLoS ONE 4(4), e5086e5093.
Frank, A. & Sullivan, W. (2014). Sustainability and the astrobiological perspective: framing human futures in a planetary context. Antropocene 5, 3241.
Gluckman, P.D. et al. (2009). Towards a new developmental synthesis: adaptive developmental plasticity and human disease. Lancet 373, 16541657.
Gould, S.J. & Lewontin, R.C. (1979). The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. Lond. B Biol. Sci. 205, 581598.
Hanson, M.A. & Gluckman, P.D. (2014). Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol. Rev. 94, 10271076.
Ho, M-W. (2008). The Rainbow and the Worm: the Physics of Organisms. World Scientific, Singapore.
Howard, J., Roberts, W.M. & Hudspeth, A.J. (1988). Mechanoelectrical transduction by hair cells. Annual Review Biophys. Biophys. Chem. 17, 99124.
Hummert, S., Bohl, K., Basanta, D., Deutsch, A., Werner, S., Theissen, G., Schroeter, A. & Schuster, S. (2014). Evolutionary game theory: cells as players. Mol. Biosyst. 10, 30443065.
Kempe, S. & Kazmierczak, J. (2002). Biogenesis and early life on Earth and Europa: favored by an alkaline ocean? Astrobiology 2, 123130.
King, N., Hittinger, C.T. & Carroll, S.B. (2003). Evolution of key cell signaling and adhesion protein families predates animal origins. Science 301, 361363.
Kirkwood, T.B. (1977). Evolution of ageing. Nature 270, 301304.
Lovelock, J. (2003). Gaia: the living Earth. Nature 426, 769770.
Madrid, E. & Horswell, S. (2014). Effect of electric field on structure and dynamics of bilayers formed from anionic phospholipids. Electrochimica Acta 146, 850860.
Margulis, L., Chapman, M., Guerrero, R. & Hall, J. (2006). The last eukaryotic common ancestor (LECA): acquisition of cytoskeletal motility from aerotolerant spirochetes in the Proterozoic Eon. Proc. Natl. Acad. Sci. U. S. A. 103, 1308013085.
Miller, W.B. Jr. (2013). The Microcosm Within: Evolution and Extinction in the Hologenome. Universal-Publisher, Florida.
Morris, S.C. (2011). Complexity: the ultimate frontier? EMBO Rep. 12, 481482.
Mullins, J.M., Penafiel, L.M., Juutilainen, J. & Litovitz, T.A. (1999). Dose-response of electromagnetic field-enhanced ornithine decarboxylase activity. Bioelectrochem. Bioenerg. 48, 193199.
Nealson, K.H. (2010). Geomicrobiology: sediment reactions defy dogma. Nature 463, 10331034.
Perry, S.F. & Carrier, D.R. (2006). The coupled evolution of breathing and locomotion as a game of leapfrog. Physiol. Biochem. Zool. 79, 997999.
Pizzi, R., Fantasia, A., Gelain, F., Rossetti, D. & Vescovi, A. (2004). Non-local corrlations between separted neural networks. Proc. SPIE 5436, Quantum Information and Computation II, 107.
Pratt, A.J. (2011). Prebiological evolution and the metabolic origins of life. Artif. Life 17, 203217.
Roux, E. (2014). The concept of function in modern physiology. J. Physiol. 592, 22452249.
Ruth, B. & Popp, F.A. (1976). Experimental investigations on ultraweak photonemission form biological systems. Z. Naturforsch. C 31, 741745.
Scholkmann, F., Fels, D. & Cifra, M. (2013). Non-chemical and non-contact cell-to-cell communication: a short review. Am. J. Transl. Res. 6, 586593.
Smith, E. & Morowitz, H.J. (2004). Universality in intermediary metabolism. Proc. Natl. Acad. Sci. U. S. A. 101, 1316813173.
Torday, J.S. (2013). Evolutionary biology redux. Perspect. Biol. Med. 56, 455484.
Torday, J.S. & Rehan, V.K. (2004). Deconvoluting lung evolution using functional/comparative genomics. Am. J. Respir. Cell Mol. Biol. 31, 812.
Torday, J.S. & Rehan, V.K. (2007a). Developmental cell/molecular biologic approach to the etiology and treatment of bronchopulmonary dysplasia. Pediatr. Res. 62, 27.
Torday, J.S. & Rehan, V.K. (2007b). The evolutionary continuum from lung development to homeostasis and repair. Am. J. Physiol. Lung. Cell Mol. Physiol. 292, L608L611.
Torday, J.S. & Rehan, V.K. (2009). Lung evolution as a cipher for physiology. Physiol. Genomics 38, 16.
Torday, J.S. & Rehan, V.K. (2011). A cell-molecular approach predicts vertebrate evolution. Mol. Biol. Evol. 28, 29732981.
Torday, J.S. & Rehan, V.K. (2012). Evolutionary Biology, Cell-Cell Communication and Complex Disease. Wiley Publishers, New Jersey.
Torday, J.S., Powell, F.L., Farmer, C.G., Orgeig, S., Nielsen, H.C. & Hall, A.J. (2010). Leptin integrates vertebrate evolution: from oxygen to the blood-gas barrier. Respir. Physiol. Neurobiol. 173, S37S42.
Trewavas, A. (1999). Le calcium, C'est la vie: calcium makes waves. Plant Physiol. 120, 16.
Trushin, M.V. (2003). The possible role of electromagnetic fields in bacterial communication. J. Microbiol. Immunol. Infect. 36, 153160.
Urban, J.P. (1994). The chondrocyte: a cell under pressure. Br. J. Rheumatol. 33, 901908.
Valentine, J.W. (2004). On the Origin of Phyla. University of Chicago Press, Chicago.
Visick, K.L. & Fuqua, C. (2005). Decoding microbial chatter: cell-cell communication in bacteria. J. Bacteriol. 187, 55075519.
Weibel, E.R. & Taylor, C.R. (1991). Principles of Animal Design: The Optimization and Symmorphosis Debate. Cambridge University Press, Cambridge.
West-Eberhard, M.J. (2005). Developmental plasticity and the origin of species differences. Proc. Natl. Acad. Sci. U. S. A. 102, 65436549.


Related content

Powered by UNSILO

Life is determined by its environment

  • John S. Torday (a1) and William B. Miller (a2)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.