Skip to main content

The maximum growth rate of life on Earth

  • Ross Corkrey (a1), Tom A. McMeekin (a1), John P. Bowman (a1), June Olley (a1), David Ratkowsky (a1) and Tom Ross (a1)...

Life on Earth spans a range of temperatures and exhibits biological growth rates that are temperature dependent. While the observation that growth rates are temperature dependent is well known, we have recently shown that the statistical distribution of specific growth rates for life on Earth is a function of temperature (Corkrey et al., 2016). The maximum rates of growth of all life have a distinct limit, even when grown under optimal conditions, and which vary predictably with temperature. We term this distribution of growth rates the biokinetic spectrum for temperature (BKST). The BKST possibly arises from a trade-off between catalytic activity and stability of enzymes involved in a rate-limiting Master Reaction System (MRS) within the cell. We develop a method to extrapolate quantile curves for the BKST to obtain the posterior probability of the maximum rate of growth of any form of life on Earth. The maximum rate curve conforms to the observed data except below 0°C and above 100°C where the predicted value may be positively biased. The deviation below 0°C may arise from the bulk properties of water, while the degradation of biomolecules may be important above 100°C. The BKST has potential application in astrobiology by providing an estimate of the maximum possible growth rate attainable by terrestrial life and perhaps life elsewhere. We suggest that the area under the maximum growth rate curve and the peak rate may be useful characteristics in considerations of habitability. The BKST can serve as a diagnostic for unusual life, such as second biogenesis or non-terrestrial life. Since the MRS must have been heavily conserved the BKST may contain evolutionary relics. The BKST can serve as a signature summarizing the nature of life in environments beyond Earth, or to characterize species arising from a second biogenesis on Earth.

Corresponding author
Hide All
Ahern T.J. & Klibanov A.M. (1985). The mechanisms of irreversible enzyme inactivation at 100°C. Science 228(4705), 12801284.
Atkinson D., Ciotti B.J. & Montagnes D.J. (2003). Protists decrease in size linearly with temperature: ca. 2.5% °C−1 . Proc. R. Soc. B 270(1533), 26052611.
Bains W. (2004). Many chemistries could be used to build living systems. Astrobiology 4(2), 137167.
Bains W., Xiao Y. & Yu C. (2015). Prediction of the maximum temperature for life based on the stability of metabolites to decomposition in water. Life 5(2), 10541100.
Bakermans C. (2012). Psychrophiles: life in the cold. In Extremophiles: Microbiology and Biotechnology, ed. Anitoris R., pp. 5376. Horizon Scientific Press, Hethersett, UK.
Bakermans C., Tsapin A.I., Souza-Egipsy V., Gilichinsky D.A. & Nealson K.H. (2003). Reproduction and metabolism at −10°C of bacteria isolated from Siberian permafrost. Environ. Microbiol. 5(4), 321326.
Baldwin R.L. (1986). Temperature dependence of the hydrophobic interaction in protein folding. Proc. Natl. Acad. Sci. USA 83(21), 80698072.
Baross J.A. & Deming J.W. (1983). Growth of ‘black smoker’ bacteria at temperatures of at least 250°C. Nature 303(5916), 423426.
Becerra A., Delaye L., Islas S. & Lazcano A. (2007). The very early stages of biological evolution and the nature of the last common ancestor of the three major cell domains. Annu. Rev. Ecol. Evol. Syst. 38, 361379.
Bednarska N.G., Schymkowitz J., Rousseau F. & Van Eldere J. (2013). Protein aggregation in bacteria: the thin boundary between functionality and toxicity. Microbiology 159(9), 17951806.
Bernhardt G., Lüdemann H.D., Jaenicke R., König H. & Stetter K.O. (1984). Biomolecules are unstable under “black smoker” conditions. Naturwissenschaften 71(11), 583586.
Birch L.C. (1948). The intrinsic rate of natural increase of an insect population. J. Anim. Ecol. 17(1), 1526.
Blain J.C. & Szostak J.W. (2014). Progress toward synthetic cells. Annu. Rev. Biochem. 83, 615640.
Bloom J.D., Labthavikul S.T., Otey C.R. & Arnold F.H. (2006). Protein stability promotes evolvability. Proc. Natl. Acad. Sci. USA 103(15), 58695874.
Boussau B., Blanquart S., Necsulea A., Lartillot N. & Gouy M. (2008). Parallel adaptations to high temperatures in the Archaean eon. Nature 456(7224), 942945.
Bowers K.J., Mesbah N.M. & Wiegel J. (2009). Biodiversity of poly-extremophilic bacteria: does combining the extremes of high salt, alkaline pH and elevated temperature approach a physico-chemical boundary for life? Saline Syst. 5(9). DOI:10.1186/1746-1448-5-9.
Bragger J., Dunn R. & Daniel R.M. (2000). Enzyme activity down to −100°C. Biochim. Biophys. Acta – Protein Struct. Mol. Enzymol. 1480(1), 278282.
Breezee J., Cady N. & Staley J. (2004). Subfreezing growth of the sea ice bacterium “Psychromonas ingrahamii. Microb. Ecol. 47(3), 300304.
Brooks S.P. (1998). Markov chain Monte Carlo method and its application. J. R. Stat. Soc. D – Stat. 47, 69100.
Carpenter E.J., Lin S. & Capone D.G. (2000). Bacterial activity in south pole snow. Appl. Environ. Microbiol. 66(10), 45144517.
Cherry J.L. (2010). Highly expressed and slowly evolving proteins share compositional properties with thermophilic proteins. Mol. Biol. Evol. 27(3), 735741.
Chirife J. & Resnik S.L. (1984). Unsaturated solutions of sodium chloride as reference sources of water activity at various temperatures. J. Food Sci. 49(6), 14861488.
Chopra A. & Lineweaver C.H. (2016). The case for a Gaian bottleneck: the biology of habitability. Astrobiology 16(1), 722.
Chrzanowski T.H., Crotty R.D. & Hubbard G. (1988). Seasonal variation in cell volume of epilimnetic bacteria. Microb. Ecol. 16(2), 155163.
Clarke A. (2014). The thermal limits to life on Earth. Int. J. Astrobiol. 13(02), 141154.
Clarke A., Morris G.J., Fonseca F., Murray B.J., Acton E. & Price H.C. (2013). A low temperature limit for life on Earth. PLoS ONE 8(6), e66207.
Cleland C.E. & Chyba C.F. (2002). Defining ‘life’. Orig. Life Evol. Biosph. 32(4), 387393.
Cleland C.E. & Copley S.D. (2005). The possibility of alternative microbial life on Earth. Int. J. Astrobiol. 4(3–4), 165173.
Cockell C. et al. (2016). Habitability: a review. Astrobiology 16(1), 129.
Collins M. & Buick R. (1989). Effect of temperature on the spoilage of stored peas by Rhodotorula glutinis . Food Microbiol. 6(3), 135141.
Corkrey R., Olley J., Ratkowsky D., McMeekin T. & Ross T. (2012). Universality of thermodynamic constants governing biological growth rates. PLoS ONE 7(2), e32003.
Corkrey R., McMeekin T.A., Bowman J.P., Ratkowsky D.A., Olley J. & Ross T. (2014). Protein thermodynamics can be predicted directly from biological growth rates. PLoS ONE 9(5), e96100.
Corkrey R., McMeekin T.A., Bowman J.P., Ratkowsky D.A., Olley J. & Ross T. (2016). The Biokinetic Spectrum for Temperature. PLoS ONE 11(4), e0153343.
Daniel R.M. (1996). The upper limits of enzyme thermal stability. Enzyme Microb. Technol. 19(1), 7479.
Daniel R. (2003). Astroenzymology – the environmental limits of enzyme activity. Proc. SPIE 4859, 121129.
Daniel R.M. & Cowan D.A. (2000). Biomolecular stability and life at high temperatures. CMLS – Cell. Mol. Life S. 57(2), 250264.
Daniel R., Dines M. & Petach H. (1996). The denaturation and degradation of stable enzymes at high temperatures. Biochem. J 317, 111.
Daniel R.M., van Eckert R., Holden J.F., Truter J. & Crowan D.A. (2004). The stability of biomolecules and the implications for life at high temperatures. In The Subseafloor Biosphere at Mid-Ocean Ridges, Geophysical Monograph 144, ed. Wilcock W.S.D., Delong E.F., Kelley D.S., Baross J.A. & Cary S.C., pp. 2539. Wiley Online Library, Washington, DC, USA.
Dartnell L. (2011). Biological constraints on habitability. Astron. Geophys. 52(1), 125.
Davies P.C. (2012). Footprints of alien technology. Acta Astronaut. 73, 250257.
Davies P.C.W. & Lineweaver C.H. (2005). Finding a second sample of life on Earth. Astrobiology 5(2), 154163.
Davies P.C., Benner S.A., Cleland C.E., Lineweaver C.H., McKay C.P. & Wolfe-Simon F. (2009). Signatures of a shadow biosphere. Astrobiology 9(2), 241249.
Des Marais D. & Walter M. (1999). Astrobiology: exploring the origins, evolution, and distribution of life in the universe. Annu. Rev. Ecol. Syst. 30, 397420.
Des Marais D.J., Harwit M.O., Jucks K.W., Kasting J.F., Lin D.N., Lunine J.I., Schneider J., Seager S., Traub W.A. & Woolf N.J. (2002). Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiology 2(2), 153181.
Dick M., Weiergräber O.H., Classen T., Bisterfeld C., Bramski J., Gohlke H. & Pietruszka J. (2016). Trading off stability against activity in extremophilic aldolases. Sci. Rep. 6(17908), 112. DOI:10.1038/srep17908.
Eppley R.W. (1972). Temperature and phytoplankton growth in the sea. Fish. Bull. 70(4), 10631085.
Fields P.A. (2001). Review: protein function at thermal extremes: balancing stability and flexibility. Comp. Biochem. Phys. A 129(2), 417431.
Fox-Powell M.G., Hallsworth J.E., Cousins C.R. & Cockell C.S. (2016). Ionic strength is a barrier to the habitability of Mars. Astrobiology 16(6), 427442.
Galtier N. & Lobry J. (1997). Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes. J. Mol. Evol. 44(6), 632636.
Goordial J., Davila A., Lacelle D., Pollard W., Marinova M.M., Greer C.W., DiRuggiero J., McKay C.P. & Whyte L.G. (2016). Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica. ISME J. 10(7), 16131624. DOI:10.1038/ismej.2015.239.
Groeneveld P., Stouthamer A.H. & Westerhoff H.V. (2009). Super life–how and why ‘cell selection’ leads to the fastest-growing eukaryote. FEBS J. 276(1), 254270.
Grogan D.W. (1998). Hyperthermophiles and the problem of DNA instability. Mol. Microbiol. 28(6), 10431049.
Hansen L.D., Criddle R.S. & Battley E.H. (2009). Biological calorimetry and the thermodynamics of the origination and evolution of life. Pure Appl. Chem. 81(10), 18431855.
Hanski I. & Gilpin M. (1991). Metapopulation dynamics: brief history and conceptual domain. Biol. J. Linnean Soc. 42(1–2), 316.
Harrison J.P., Gheeraert N., Tsigelnitskiy D. & Cockell C.S. (2013). The limits for life under multiple extremes. Trends Microbiol. 21(4), 204212.
Harrison J.P., Dobinson L., Freeman K., McKenzie R., Wyllie D., Nixon S.L. & Cockell C.S. (2015). Aerobically respiring prokaryotic strains exhibit a broader temperature – pH – salinity space for cell division than anaerobically respiring and fermentative strains. J. R. Soc. Interface 12, 20150658.
Hoehler T. (2004). Biological energy requirements as quantitative boundary conditions for life in the subsurface. Geobiology 2(4), 205215.
Holden J.F. & Daniel R.M. (2004). The upper temperature limit for life based on hyperthermophile culture experiments and field observations. In The Subseafloor Biosphere at Mid-Ocean Ridges, Geophysical Monograph 144, ed. Wilcock W.S.D., Delong E.F., Kelley D.S., Baross J.A. & Cary S.C., pp. 1324. Wiley Online Library, Washington, DC, USA.
Iyer-Biswas S., Wright C.S., Henry J.T., Lo K., Burov S., Lin Y., Crooks G.E., Crosson S., Dinner A.R. & Scherer N.F. (2014). Scaling laws governing stochastic growth and division of single bacterial cells. Proc. Natl. Acad. Sci. USA 111(45), 1591215917.
Jaenicke R. & Sterner R. (2006). Life at high temperatures. In The Prokaryotes, ed. Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H. & Stackebrandt E., volume 2, chapter 1.7, pp. 167209. Springer, New York, USA.
James T. & Read C. (1957). The effect of incubation temperature on the cell size of Tetrahymena pyriformis . Exp. Cell Res. 13(3), 510516.
Jones E. & Lineweaver C. (2012). Using the phase diagram of liquid water to search for life. Aust. J. Earth Sci. 59(2), 253262.
Karel M., Anglea S., Buera P., Karmas R., Levi G. & Roos Y. (1994). Stability-related transitions of amorphous foods. Thermochim. Acta 246(2), 249269.
Karlin S., Mrázek J., Campbell A. & Kaiser D. (2001). Characterizations of highly expressed genes of four fast-growing bacteria. J. Bacteriol. 183(17), 50255040.
Kim Y.E., Hipp M., Bracher A., Hayer-Hartl M. & Hartl F.U. (2013). Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Biochem. 82(1), 323355.
Klumpp S., Scott M., Pedersen S. & Hwa T. (2013). Molecular crowding limits translation and cell growth. Proc. Natl. Acad. Sci. USA 110(42), 1675416759.
Koga Y. (2012). Thermal adaptation of the archaeal and bacterial lipid membranes. Archaea 2012(Article ID 789652), 16. DOI:10.1155/2012/789652.
Koop T., Luo B., Tsias A. & Peter T. (2000). Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature 406(6796), 611614.
Kumar S. & Nussinov R. (2001). How do thermophilic proteins deal with heat? Cell. Mol. Life Sci. 58(9), 12161233.
Larkin J. & Stokes J. (1968). Growth of psychrophilic microorganisms at subzero temperatures. Can. J. Microbiol. 14(2), 97101.
Larralde R., Robertson M.P. & Miller S.L. (1995). Rates of decomposition of ribose and other sugars: implications for chemical evolution. Proc. Natl. Acad. Sci. USA 92(18), 81588160.
Leibrock E., Bayer P. & Lüdemann H.D. (1995). Nonenzymatic hydrolysis of adenosinetriphosphate (ATP) at high temperatures and high pressures. Biophys. Chem. 54(2), 175180.
Lewis N.E. et al. (2010). Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol. Syst. Biol. 6(1), 390.
Luke K.A., Higgins C.L. & Wittung-Stafshede P. (2007). Thermodynamic stability and folding of proteins from hyperthermophilic organisms. FEBS J. 274(16), 40234033.
Maida I., Bosi E., Perrin E., Papaleo M.C., Orlandini V., Fondi M., Fani R., Wiegel J., Bianconi G. & Canganella F. (2013). Draft genome sequence of the fast-growing bacterium Vibrio natriegens strain DSMZ 759. Genome Announcements 1(4), e0064813.
Maitra A. & Dill K.A. (2015). Bacterial growth laws reflect the evolutionary importance of energy efficiency. Proc. Natl. Acad. Sci. USA 112(2), 406411.
Makhatadze G.I. & Privalov P.L. (1993). Contribution of hydration to protein-folding thermodynamics. I. The enthalpy of hydration. J. Mol. Biol. 232(2), 639659.
McMeekin T.A., Chandler R.E., Doe P.E., Garland C.D., Olley J., Putro S. & Ratkowsky D.A. (1987). Model for combined effect of temperature and salt concentration/water activity on the growth rate of Staphylococcus xylosus . J. Appl. Bacteriol. 62(6), 543550.
McMeekin T.A., Olley J.N., Ross T. & Ratkowsky D.A. (1993). Predictive Microbiology: Theory and Application. Research Studies Press Ltd., Taunton, Somerset, England.
McMeekin T., Olley J., Ratkowsky D., Corkrey R. & Ross T. (2013). Predictive microbiology theory and application: is it all about rates? Food Control 29(2), 290299.
Mira A., Ochman H. & Moran N.A. (2001). Deletional bias and the evolution of bacterial genomes. Trends Genet. 17(10), 589596.
Montagnes D.J.S. & Franklin D.J. (2001). Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: reconsidering some paradigms. Limnol. Oceanogr. 46(8), 20082018.
More N., Daniel R.M. & Petach H.H. (1995). The effect of low temperatures on enzyme activity. Biochem. J. 305(1), 1720.
Mukaiyama A. & Takano K. (2009). Slow unfolding of monomeric proteins from hyperthermophiles with reversible unfolding. Int. J. Mol. Sci. 10(3), 13691385.
Murphy K.P., Privalov P.L. & Gill S.J. (1990). Common features of protein unfolding and dissolution of hydrophobic compounds. Science 247(4942), 559561.
Mykytczuk N.C.S., Foote S.J., Omelon C.R., Southam G., Greer C.W. & Whyte L.G. (2013). Bacterial growth at −15°C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J. 7(6), 12111226.
Pace N.R. (2001). The universal nature of biochemistry. Proc. Natl. Acad. Sci. USA 98(3), 805808.
Panikov N., Flanagan P., Oechel W., Mastepanov M. & Christensen T. (2006). Microbial activity in soils frozen to below −39°C. Soil Biol. Biochem. 38(4), 785794.
Pitt J. & Christian J. (1968). Water relations of xerophilic fungi isolated from prunes. Appl. Microbiol. 16(12), 18531858.
Ponder M.A., Gilmour S.J., Bergholz P.W., Mindock C.A., Hollingsworth R., Thomashow M.F. & Tiedje J.M. (2005). Characterization of potential stress responses in ancient Siberian permafrost psychroactive bacteria. FEMS Microbiol. Ecol. 53(1), 103115.
Privalov P.L. & Gill S.J. (1988). Stability of protein structure and hydrophobic interaction. Adv. Protein Chem. 39, 191234.
Privalov P.L. & Makhatadze G.I. (1993). Contribution of hydration to protein-folding thermodynamics. II. The entropy and Gibbs energy of hydration. J. Mol. Biol. 232(2), 660679.
Ratkowsky D.A., Olley J. & Ross T. (2005). Unifying temperature effects on the growth rate of bacteria and the stability of globular proteins. J. Theor. Biol. 233(3), 351362.
Reid D.S. & Fennema O.R. (2007). Water and ice. In Fennema's Food Chemistry, ed. Damodaran S., Parkin K.L. & Fennema O.R., chapter 2, pp. 1777. CRC Press, Boca Raton.
Resnik S.L. & Chirife J. (1988). Proposed theoretical water activity values at various temperatures for selected solutions to be used as reference sources in the range of microbial growth. J. Food Prot. 51(5), 419423.
Rivkina E.M., Friedmann E.I., McKay C.P. & Gilichinsky D.A. (2000). Metabolic activity of permafrost bacteria below the freezing point. Appl. Environ. Microbiol. 66(8), 32303233.
Roos Y.H. (2010). Glass transition temperature and its relevance in food processing. Annu. Rev. Food Sci. Technol. 1, 469496.
Ross T. (1993). A philosophy for the development of kinetic models in predictive microbiology. PhD Thesis, University of Tasmania, Hobart.
Ross T. (1997). Assessment of a theoretical model for the effects of temperature on bacterial growth rate. In Int. Inst. Refrig., ed. Dodd J.C. & Gianinazzi-Pearson V., pp. 6471, International Institute of Refrigeration, Paris, Quimper, France.
Sabath N., Ferrada E., Barve A. & Wagner A. (2013). Growth temperature and genome size in bacteria are negatively correlated, suggesting genomic streamlining during thermal adaptation. Genome Biol. Evol. 5(5), 966977.
Schulze-Makuch D. & Irwin L.N. (2008). Life in the Universe: Expectations and Constraints. Springer Science & Business Media, Berlin Heidelberg.
Sjöstedt J., Hagström Å. & Zweifel U.L. (2012). Variation in cell volume and community composition of bacteria in response to temperature. Aquat. Microb. Ecol. 66(3), 237246.
Space Studies Board. (2007). The Limits of Organic Life in Planetary Systems. National Academies Press, Washington, DC, USA.
Stepanov V.G. & Nyborg J. (2002). Thermal stability of aminoacyl-trnas in aqueous solutions. Extremophiles 6(6), 485490.
Sterner R.h. & Liebl W. (2001). Thermophilic adaptation of proteins. Crit. Rev. Biochem. Mol. Biol. 36(1), 39106.
Stetter K.O. (2006). Hyperthermophiles in the history of life. Philos. Trans. R. Soc. B 361(1474), 18371843.
Stevenson A. et al. (2015). Is there a common water-activity limit for the three domains of life? ISME J. 9(6), 13331351.
Stockbridge R.B., Lewis C.A., Yuan Y. & Wolfenden R. (2010). Impact of temperature on the time required for the establishment of primordial biochemistry, and for the evolution of enzymes. Proc. Natl. Acad. Sci. USA 107(51), 2210222105.
Takai K., Nakamura K., Toki T., Tsunogai U., Miyazaki M., Miyazaki J., Hirayama H., Nakagawa S., Nunoura T. & Horikoshi K. (2008). Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc. Natl. Acad. Sci. USA 105(31), 1094910954.
Valentine D.L. (2007). Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat. Rev. Microbiol. 5(4), 316323.
van de Vossenberg J.L., Driessen A.J. & Konings W.N. (1998). The essence of being extremophilic: the role of the unique archaeal membrane lipids. Extremophiles 2(3), 163170.
Vieira-Silva S. & Rocha E.P.C. (2010). The systemic imprint of growth and its uses in ecological (meta) genomics. PLoS Genet. 6(1), e1000808.
Wang X., Minasov G. & Shoichet B.K. (2002). Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs. J. Mol. Biol. 320(1), 8595.
Weiss M.C., Sousa F.L., Mrnjavac N., Neukirchen S., Roettger M., Nelson-Sathi S. & Martin W.F. (2016). The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1(16116), 18. DOI:10.1038/nmicrobiol.2016.116.
White R.H. (1984). Hydrolytic stability of biomolecules at high temperatures and its implication for life at 250°C. Nature 310(5976), 430432.
Wiggins P. (2008). Life depends upon two kinds of water. PLoS ONE 3(1), e1406.
Wolfenden R. & Snider M.J. (2001). The depth of chemical time and the power of enzymes as catalysts. Acc. Chem. Res. 34(12), 938945.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 13
Total number of PDF views: 162 *
Loading metrics...

Abstract views

Total abstract views: 1336 *
Loading metrics...

* Views captured on Cambridge Core between 6th February 2017 - 20th January 2018. This data will be updated every 24 hours.