Skip to main content Accessibility help
×
Home

Molecular microbial community structure of the Regenerative Enclosed Life Support Module Simulator air system

  • Christine Moissl (a1), Naofumi Hosoya (a1), James Bruckner (a1), Tara Stuecker (a1), Monsi Roman (a2) and Kasthuri Venkateswaran (a1)...

Abstract

The Regenerative Enclosed Life Support Module Simulator (REMS) was designed to simulate the conditions aboard the International Space Station (ISS). This unique terrestrial, encapsulated environment for humans and their associated organisms allowed investigations into the microbial communities within an enclosed habitat system, primarily with respect to diversity, phylogeny and the possible impact on human health. To assess time- and/or condition-dependent changes in microbial diversity within REMS, a total of 27 air samples were collected during three consecutive months. The microbial burden and diversity were elucidated using culture-dependent and culture-independent molecular methods. The results indicate that during controlled conditions the total microbial burden detected by culture-dependent techniques (below a detectable level to 102 cells m−3 of air) and intracellular ATP assay was significantly low (102–103 cells m−3 of air), but increased during the uncontrolled post-operation phase (∼104 cells m−3 of air). Only Gram-positive and α-proteobacteria grew under tested culture conditions, with a predominant occurrence of Methylobacterium radiotolerans, and Sphingomonas yanoikuyae. Direct DNA extraction and 16S rDNA sequencing methodology revealed a broader diversity of microbes present in the REMS air (51 species). Unlike culture-dependent analysis, both Gram-positive and proteobacteria were equally represented, while members of a few proteobaterial groups dominated (Rhodopseudomonas, Sphingomonas, Acidovorax, Ralstonia, Acinetobacter, Pseudomonas, and Psychrobacter). Although the presence of several opportunistic pathogens warrants further investigation, the results demonstrated that routine maintenance such as controlling the humidity, crew’s daily cleaning, and air filtration were effective in reducing the microbial burden in the REMS.

Copyright

References

Hide All
Amann, R.I., Ludwig, W. & Schleifer, K.H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143169.
Benardini, J., Ballinger, J., Crawford, R., Roman, M., Sumner, R. & Venkateswaran, K. (2005). International Space Station Internal Thermal Coolant System: an initial assessment of the microbial communities within fluids from ground support and flight hardware. In Proc. 34th Int. Conf. on Environmental Systems, Rome, Italy, July, 2005. SAE Technical Paper. 2005-01-059.
Boyden, D.G. (1962). In The Bacterial Flora in Fleet Ballistic Missile Submarines During Prolonged Submergence. U.S. Naval Medical Research Laboratory. Bureau of Medicine and Surgery, Navy Department, Arlington, VA.
Britschgi, T.B. & Giovannoni, S.J. (1991). Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing. Appl. Environ. Microbiol. 57, 17071713.
Burge, H.A., Pierson, D.L., Groves, T.O., Strawn, K.F. & Mishra, S.K. (2000). Dynamics of airborne fungal populations in a large office building. Curr. Microbiol. 40, 1016.
Carasquillo, R.L. (2005). ISS ECLSS technology evolution for exploration. In Proc. 43rd AIAA Aerospace Sciences and Exhibit, Reno, NV, 10–13 January 2005, pp. 18. paper AIAA-205-337.
Carter, L., Tabb, D., Tatara, J.D. & Mason, R.K. (2005). Performance qualification test of the ISS Water Processor Assembly (WPA) expendables. In Proc. 35th Int. Conf. on Environmental Systems. SAE Technical Paper 2005-01-2837.
Castro, V.A., Thrasher, A.N., Healy, M., Ott, C.M. & Pierson, D.L. (2004). Microbial characterization during the early habitation of the International Space Station. Microbiol. Ecol. 47, 119126.
Drancourt, M., Bollet, C., Carlioz, A., Martelin, R., Gayral, J.P. & Raoult, D. (2000). 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J. Clin. Microbiol. 38, 36233630.
Edmiston, C.E. Jr., Seabrook, G.R., Cambria, R.A., Brown, K.R., Lewis, B.D., Sommers, J.R., Krepel, C.J., Wilson, P.J., Sinski, S. & Towne, J.B. (2005). Molecular epidemiology of microbial contamination in the operating room environment: is there a risk for infection? Surgery 138, 579582.
Favero, M.S., McDade, J.J., Robertsen, J.A., Hoffman, R.K. & Edwards, R.W. (1968). Microbiological sampling of surfaces. J. Appl. Bacteriol. 31, 336343.
Ferguson, J., Taylor, G.R. & Mieszkuc, B.J. (1975). In Microbiological Investigations, pp. 83103. Scientific and Technical Information Office, National Aeronautics and Space Administration, Washington, DC.
Gilchrist, M.J., Kraft, J.A., Hammond, J.G., Connelly, B.L. & Myers, M.G. (1986). Detection of Pseudomonas mesophilica as a source of nosocomial infections in a bone marrow transplant unit. J. Clin. Microbiol. 23, 10521055.
Hiraishi, A., Furuhata, K., Matsumoto, A., Koike, K.A., Fukuyama, M. & Tabuchi, K. (1995). Phenotypic and genetic diversity of chlorine-resistant Methylobacterium strains isolated from various environments. Appl. Environ. Microbiol. 61, 20992107.
ISO (1999). ISO 14644-1 Part 1: Classification of air cleanliness. http://www.iest.org/iso/iso1.htm
Johnson, J.L. (1981). Genetic characterization. In Manual of Methods for General Bacteriology, eds Gerhardt, P., Murray, R.G.E., Costilaw, R.N., Nester, E.W., Wood, W.A., Krieg, N.R. & Phillips, G.B., American Society for Microbiology, Washington, DC.
Karl, D. (1980). Cellular nucleotide measurements and applications in microbial ecology. Microbiol. Rev. 44, 739796.
Kawamura, Y., Li, Y., Liu, H., Huang, X., Li, Z. & Ezaki, T. (2001). Bacterial population in Russian space station ‘Mir’. Microbiol. Immunol. 45, 819828.
Koenig, D.W. & Pierson, D.L. (1997). Microbiology of the Space Shuttle water system. Water Sci. Technol. 35, 5964.
Koskinen, R., Ali-Vehmas, T., Kampfer, P., Laurikkala, M., Tsitko, I., Kostyal, E., Atroshi, F. & Salkinoja-Salonen, M. (2000). Characterization of Sphingomonas isolates from Finnish and Swedish drinking water distribution systems. J. Appl. Microbiol. 89, 687696.
La, Duc M.T., Kern, R. & Venkateswaran, K. (2004). Microbial monitoring of spacecraft and associated environments. Microbiol. Ecol. 47, 150158.
La, Duc M.T., Nicholson, W., Kern, R. & Venkateswaran, K. (2003). Microbial characterization of the Mars Odyssey spacecraft and its encapsulation facility. Environ. Microbiol. 5, 977985.
Lane, D.J. (1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, eds Stackebrandt, E. & Goodfellow, M., pp. 115163. Wiley, New York.
Levine, H.B. & Cobet, A.B. (1970). The Tektite-I dive. Mycological aspects. Arch. Environ. Health. 20, 500505.
Liesack, W. & Stackebrandt, E. (1992). Occurrence of novel groups of the domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J. Bacteriol. 174, 50725078.
Ludwig, W. et al. (2004). Nucleic Acids Res. 32, 13631371.
Maidak, B.L. et al. (2000). The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 28, 173174.
Mehta, S.K., Cohrs, R.J., Forghani, B., Zerbe, G., Gilden, D.H. & Pierson, D.L. (2004). Stress-induced subclinical reactivation of varicella zoster virus in astronauts. J. Med. Virol. 72, 174179.
Mehta, S.K., Stowe, R.P., Feiveson, A.H., Tyring, S.K. & Pierson, D.L. (2000). Reactivation and shedding of cytomegalovirus in astronauts during spaceflight. J. Infection Discovery 182, 17611764.
Morris, J.E. (1972). Microbiology of the submarine environment. Proc. R. Soc. Med. 65, 799800.
NASA (1980). NASA standard procedures for the microbiological examination of space hardware. In Jet Propulsion Laboratory Communication, NHB 5340.1B, Jet Propulsion Laboratory, Pasadena, CA.
Newcombe, D.A., Schuerger, A.C., Benardini, J.N., Dickinson, D., Tanner, R. & Venkateswaran, K. (2005). Survival of spacecraft-associated microorganisms under simulated Martian UV irradiation. Appl. Environ. Microbiol. 71, 81478156.
Novikova, N.D. (2004). Review of the knowledge of microbial contamination of the Russian manned spacecraft. Microbiol. Ecol. 47, 127132.
Novikova, N.D., De, Boever P., Poddubko, S., Deshevaya, E., Polikarpov, N., Rakova, N., Coninx, I. & Mergeay, M. (2006). Survey of environmental biocontamination on board the International Space Station. Res. Microbiol. 157, 512.
Oliver, J.D. (2005). The viable but nonculturable state in bacteria. J. Microbiol. 43, 93100.
Oliver, J.D. & Bockian, R. (1995). In vivo resuscitation, and virulence towards mice, of viable but nonculturable cells of Vibrio vulnificus. Appl. Environ. Microbiol. 61, 26202623.
Oliver, J.D., Dagher, M. & Linden, K. (2005). Induction of Escherichia coli and Salmonella typhimurium into the viable but nonculturable state following chlorination of wastewater. J. Water Health 3, 249257.
Ott, M. (1994). Genetic approaches to study Legionella pneumophila pathogenicity. FEMS Microbiol. Rev. 14, 161176.
Pierson, D., Ott, C.M. & Groves, T.O. (2002). Characterization of microbial activity in the chamber systems and environment, pp. 229259. Univelt, San Diego, CA.
Pierson, D.L. (2001). Microbial contamination of spacecraft. Gravitational Space Biol. Bull. 14, 16.
Samsonov, N.M., Bobe, L.S., Gavrilov, L.I., Novikov, V.M., Farafonov, N.S., Grigoriev, J.I., Zaitsev, E.N., Romanov, S.J., Grogoriev, A.I. & Sinjak, J.E. (2000) Long-duration space mission regenerative life support. Acta Astronaut. 47, 129138.
Satomi, M., La, Duc M.T. & Venkateswaran, K. (2006). Bacillus safensis sp. nov., isolated from spacecraft and assembly facility surfaces. Int. J. Syst. Evol. Microbiol. 56, 17351740.
Stackebrandt, E. & Embley, T.M. (2000). Diversity of uncultured microorganisms in the environment. In Nonculturable Microorganisms in the Environment, eds Colwell, R.R. & Grimes, D.J., pp. 5775. ASM Press, Washington, DC.
Stenberg, B., Eriksson, N., Hansson, Mild K., Höög, J., Sandström, M., Sundell, J. & Wall, S. (1993). An interdisciplinary study of the ‘sick building-syndrome’ (SBS). In Proc. Indoor Air’93. The Office Illness Project in northern Sweden. Helsinki, Finland.
Stuecker, T.N., Newcombe, D.A., Murdock, E., Sumner, R. & Venkateswaran, K. (2005). Characterization of the VBNC state of two opportunistic pathogens isolated from ISS drinking water: implications for biocide treatment and bioburden detection. In Proc. 34th Int. Conf. on Environmental Systems, July, 2005, Rome, Italy. SAE Technical Paper. 2005-01-058.
Suzuki, M.T., Taylor, L.T. & DeLong, E.F. (2000). Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl. Environ. Microbiol. 66, 46054614.
Tang, Y.W., Ellis, N.M., Hopkins, M.K., Smith, D.H., Dodge, D.E. & Persing, D.H. (1998). Comparison of phenotypic and genotypic techniques for identification of unusual aerobic pathogenic Gram-negative bacilli. J. Clin. Microbiol. 36, 36743679.
Tang, Y.W., Von Graevenitz, A., Waddington, M.G., Hopkins, M.K., Smith, D.H., Li, H., Kolbert, C.P., Montgomery, S.O. & Persing, D.H. (2000). Identification of coryneform bacterial isolates by ribosomal DNA sequence analysis. J. Clin. Microbiol. 38, 16761678.
Taylor, G., Graves, R.C., Brockett, R.M., Ferguson, J.K. & Mieszkuc, B.J. (1977). Skylab environmental and crew microbiological studies. In Biomedical Results from Skylab, eds Johnston, R. & Dietlein, L.F., pp. 5363. Scientific and Technical Information Office, National Aeronautics and Space Administration, Washington, DC.
Thomas, T.L., Hooper, T.I., Camarca, M., Murray, J., Sack, D., Mole, D., Spiro, R.T., Horn, W.G. & Garland, F.C. (2000). A method for monitoring the health of US Navy submarine crewmembers during periods of isolation. Aviat. Space Environ. Med. 71, 699705.
Torsvik, V. & Ovreas, L. (2002). Microbial diversity and function in soil: from genes to ecosystems. Curr. Opin. Microbiol. 5, 240245.
Upsher, J., Fletcher, L.E. & Upsher, C.M. (1994). In Microbiological Conditions on Oberon Submarines. Department of Defence, Defence Science and Technology Organisation, Melbourne, Victoria, Australia.
Venkateswaran, K., Hattori, N., La, Duc M.T. & Kern, R. (2003). ATP as a biomarker of viable microorganisms in clean-room facilities. J. Microbiol. Meth. 52, 367377.
Venkateswaran, K., Satomi, M., Chung, S., Kern, R., Koukol, R., Basic, C. & White, D. (2001). Molecular microbial diversity of a spacecraft assembly facility. Syst. Appl. Microbiol. 24, 311320.
Venkateswaran, K., La, Duc M.T., Newcombe, D.A., Kempf, M.J., Koke, J.A., Smoot, J.C., Smoot, L.M. & Stahl, D. (2004). Molecular microbial analyses of the Mars Exploration Rovers assembly facility. In Proc. 105th General Meeting of the American Society of Microbiology, Salt Lake City, UT. ASM Press, Washington, DC.
Ward, D.M., Weller, R. & Bateson, M.M. (1990a). 16S rRNA sequences reveal uncultured inhabitants of a well-studied thermal community. FEMS Microbiol. Rev. 6, 105115.
Ward, D.M., Weller, R. & Bateson, M.M. (1990b). 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345, 6365.
Wise, M.G., McArthur, J.V. & Shimkets, L.J. (1997). Bacterial diversity of a Carolina bay as determined by 16S rRNA gene analysis: confirmation of novel taxa. Appl. Environ. Microbiol. 63, 15051514.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed