Skip to main content Accessibility help

Nutrient and population dynamics in a subglacial reservoir: a simulation case study of the Blood Falls ecosystem with implications for astrobiology

  • Thomson Mason Fisher (a1) and Dirk Schulze-Makuch (a1)

Subglacial ecosystems have recently become of interest within the astrobiological community, as they represent a potentially habitable location in otherwise uninhabitable environments. We used data from Blood Falls, particularly the periodic discharge from the subglacial reservoir beneath Taylor Glacier, Antarctica, to construct an ecosystem model of the putative subglacial microbial community residing there using system dynamics modelling. The model results were, for the most part, within an order of magnitude of the geochemical field data. Productivity was quite low, at 6.4×10−5 g carbon l−1 yr−1. Based on the results, we draw the following conjectures for the search for life on Mars: A similar ecosystem would require a continual supply of oxidized iron for energy and generate significant amounts of reduced iron as a waste product, be relatively resilient to temporary disturbances, and, thermodynamically, would require at least 0.003 kJ mol l−1 of energy to survive at that level of productivity. These results may help to better identify the constraints and boundaries of ecosystems in extreme environments, on Earth and other planetary bodies.

Corresponding author
Hide All
Anderson, J. (1973). The eutrophication of lakes. In: Toward Global Equilibrium: Collected Papers, ed. Meadows, D.L. and Meadows, D.H.Pegasus Communications, Walthman, MA.
Anesio, A.M., Hodson, A.J., Fritz, A., Psenner, R. & Sattler, B. (2009). High microbial activity on glaciers: importance to the global carbon cycle. Global Change Biology 15, 955960.
Bottrell, S. & Tranter, M. (2002). Sulphide oxidation under partially anoxic conditions at the bed of Haut Glacier d'Arolla, Switzerland. Hydrological Processes 16, 23632368.
Brannan, D. & Caldwell, D. (1983). Growth kinetics and yield coefficients of the extreme thermophile Thermothix thiopara in continuous culture. Applied and Environmental Microbiology 45(1), 169173.
Carr, M. & Head, J. (2003). Oceans on Mars: an assessment of observational evidence and possible fate. Journal of Geophysical Research 108(E5), 50425070.
Dobrinski, K., Longo, D. & Scott, K. (2005). A hydrothermal vent chemolithoautotroph with a carbon concentrating mechanism. Journal of Bacteriology 187, 57615766.
Fassett, C. & Head, J. (2008). Valley network-fed open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology. Icarus 198, 3756.
Gadekar, S., Nemati, M. & Hill, G. (2006). Batch and continuous biooxidation of sulphide by Thiomicrospira sp. CVO: reaction kinetics and stoichiometry. Water Research 40, 24362446.
Gaidos, E.J., Nealson, K.J. & Kirschvink, J.L. (1999). Life in ice-covered oceans. Science 284(5420), 16311633.
Gaidos, E.J., Lanoil, B., Thorsteinn, T., Graham, A., Skidmore, M., Han, S., Rust, T. & Popp, B. (2004). A viable microbial community in subglacial volcanic crater lake, Iceland. Astrobiology 4(3), 327344.
Hodson, A., Anesio, A.M., Tranter, M., Fountain, A., Osborn, M., Priscu, J., Laybourn-Parry, J. & Sattler, B. (2008). Glacial Ecosystems. Ecol. Monogr. 78, 4167.
Irwin, L. & Schulze-Makuch, D. (2003). Strategy for modeling putative multi-level ecosystems on Europa. Astrobiology 3(4), 813821.
Knittle, K., Kuever, J., Meyerdieks, A., Meinke, R., Amann, R. & Brinkhoff, T. (2005). Thiomicrospira arctica sp. Nov. and Thiomicrospira psychrophila sp. Nov., psychrophilic, obligately chemolithautotrophic, sulfur-oxidzing bacteria isolated from marine Arctic sediments. International Journal of Systematic and Evolutionary Microbiology 55, 781786.
Mikucki, J.A. (2005). Microbial Ecology of an Antarctic Subglacial Environment. Montana State University Press, Bozeman, MT.
Mikucki, J.A. & Priscu, J.C. (2007). Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier, Antarctica. Applied and Environmental Microbiology 73(12), 4029.
Mikucki, J.A., Foreman, C.M., Sattler, B., Lyons, W.B. & Priscu, J.C. (2004). Geomicrobiology of Blood Falls: an iron-rich saline discharge at the terminus of the Taylor Glacier, Antarctica. Aquatic Geochemistry 10, 199220.
Mikucki, J.A., Pearson, A., Johnston, D.T., Turchyn, A.V., Farquhar, J., Schrag, D.P., Anbar, A.D., Priscu, J.C. & Lee, P.A. (2009). A contemporary microbially maintained subglacial ferrous ‘ocean’. Science 324, 397398.
Monod, J. (1949). The growth of bacterial cultures. Annual Review of Microbiology 3, 371394.
Polis, G. & Hurd, S. (1996). Linking marine and terrestrial food webs: allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. American Naturalist 147(3), 396423.
Ruby, E. & Jannasch, H. (1982). Physiological characteristics of Thiomicrospira sp. strain L-12 isolated from deep-sea hydrothermal vents. J. Bacteriol. 149(1), 161165.
Schink, B. (2006). Microbially driven redox reactions in anoxic environments: pathways, energetic, and biochemical consequences. Engineering in Life Science 6, 228233.
Schulze-Makuch, D., Irwin, L. & Fairen, A.G. (2013). Drastic environmental changes and its effects on a planetary biosphere. Icarus in press.
Skidmore, M., Foght, J. & Sharp, M. (2000). Microbial life beneath a high arctic glacier. Applied and Environmental Microbiology 66(8), 3412–3220.
Thingstad, T. (1987). Utilization of N, P and organic C by heterotrophic bacteria. I. Outline of a chemostat theory with a consistent concept of ‘maintenance’ metabolism. Marine Ecology Progress Series 35, 99109.
Tranter, M., Skidmore, M. & Wadham, J. (2005). Hydrological controls on microbial communities subglacial environments. Hydrol. Process 19, 995998.
Ventana Systems, Inc. (2012). Vensim Version 6.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed