Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-p6h7k Total loading time: 0.402 Render date: 2022-05-27T13:36:58.427Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Phylogeny of Opisthokonta and the evolution of multicellularity and complexity in Fungi and Metazoa

Published online by Cambridge University Press:  05 January 2004

Mónica Medina
Affiliation:
Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA Present address: Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA. e-mail: m_medina@lbl.gov
Allen G. Collins
Affiliation:
ITZ, Ecology & Evolution, Tierärztliche Hochschule Hannover, Bünteweg 17d, 30559 Hannover, Germany Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, CA 94720, USA
John W. Taylor
Affiliation:
Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
James W. Valentine
Affiliation:
Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, CA 94720, USA
Jere H. Lipps
Affiliation:
Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, CA 94720, USA
Linda Amaral-Zettler
Affiliation:
Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA
Mitchell L. Sogin
Affiliation:
Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

While early eukaryotic life must have been unicellular, multicellular lifeforms evolved multiple times from protistan ancestors in diverse eukaryotic lineages. The origins of multicellularity are of special interest because they require evolutionary transitions towards increased levels of complexity. We have generated new sequence data from the nuclear large subunit ribosomal DNA gene (LSU rDNA) and the SSU rDNA gene of several unicellular opisthokont protists – a nucleariid amoeba (Nuclearia simplex) and four choanoflagellates (Codosiga gracilis, Choanoeca perplexa, Proterospongia choanojuncta and Stephanoeca diplocostata) to provide the basis for re-examining relationships among several unicellular lineages and their multicellular relatives (animals and fungi). Our data indicate that: (1) choanoflagellates are a monophyletic rather than a paraphyletic assemblage that independently gave rise to animals and fungi as suggested by some authors and (2) the nucleariid filose amoebae are the likely sister group to Fungi. We also review published information regarding the origin of multicellularity in the opisthokonts.

Type
Research Article
Copyright
2003 Cambridge University Press
You have Access
56
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Phylogeny of Opisthokonta and the evolution of multicellularity and complexity in Fungi and Metazoa
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Phylogeny of Opisthokonta and the evolution of multicellularity and complexity in Fungi and Metazoa
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Phylogeny of Opisthokonta and the evolution of multicellularity and complexity in Fungi and Metazoa
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *